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Abstract 

The goal of this model is the describe the processes inside the Flash Lab system:  

 Change in the concentration of chemo-repellent. 

 Change in the concentration of bacteria. 

This model is based on the Keller – Segal equation of chemotaxis [1] in a one-dimensional 

problem (Thin channel).  

It's important to notice that this model can show the overall behavior and not exact val-

ues. The final system is supposed to detect a variety of materials in many different un-

known solvents, each of them has its own diffusion properties. Also, some aspects such as 

working conditions (temperature, humidity etc.) might change in widespread commercial 

use and affect the results. Taking those into account, further fitting will be necessary. 

For more information on the project see: http://2016.igem.org/Team:Technion_Israel 

Keywords 

Chemotaxis, Chemo-repellent, Chemo-attractant. 
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 Introduction 

FlashLab, a novel detection tool based on the chemotaxis system of E. coli. It uses 

the chemotaxis system to concentrate colored bacteria, this in turn, creates a visible gra-

dient in color – detection of target material. Using the S.tar technology, the FlashLab can 

detect verity of materials: hormones, amino acids, PCE etc.  

 

Figure 1:1 Detection tool explanation 

1.1 The fluidic chip 

The device is composed off a commercial fluidic chip: 

 

Figure 1:2 The geometry of commercial fluidic chip 

The chip is open on the button part and closed with a standard microscope cover glass (

 0.3 mm  thick). The length of the chip is much bigger than the width and height so we 

could assume a one dimensional channel. 
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1.2 Device Setup 

The setup of the device is two parts process, as shown below (Figure 1:3): 

a) The channel is filled with colored E. coli bacteria in motility buffer.  

b) Sample is loaded into one of the entry slots. 

 

Figure 1:3 The chip setup 

This model depicts the reaction for chemo-repellent. This model can be used as a bases 

for solving a similar problem for a chemo-attractant. 

1.3 Device Detection Results 

Once the sample is loaded, it diffuses into the channel. If the sample contains a re-

pellent, the bacteria will react and move away from it as shown below: 

 

Figure 1:4 Chemotaxis reaction in the chip  

This will cause changes in the bacteria concentration: very low concentration, where the 

repellent diffused to, next to a very high concentration, where the bacteria moved to 

(right picture, figure 1:4). Those changes will also be visible, as the higher concentration of 

colored bacteria manifests itself in a stronger color (blue gradient, figures 1:3 and 1:4). 

If the sample does not contain target material, the bacteria will not react and no gradient 

will form. 

 

 

 



10 
 

 Chemo-Repellent Concentra-

tion 

The basic assumptions of the model for the chemo-repellent are: 

 There are no forces except diffusion:  

o Chemo-repellent concentration in the sample is relatively low and 

does not causes osmotic pressure. 

o The changes in pressure due to sample insertion is negligible. 

o No other significant external forces (for example, moving the chip 

while in use).  

 The bacteria do not consume the chemo-repellent and its concentra-

tion does not change with time. This is not case with chemo-

attractants. 

 We expect to detect small proteins and molecules (those are the ma-

terials bacterial receptors bind to). The diffusion coefficient for such 

materials is about 
2

910
m

s

  
 
 

.  

 Because of the geometric properties of the channel and the ex-

pected diffusion coefficient, this is approximately a half-infinite one-

dimensional problem. 

 Initial condition: no chemo-repellent is present in the chip at time zero 

(a). 

 Boundary condition: at infinite distance the concentration is zero (b) 

and the there is conservation of dissolved material mass (c). 

2.1 Mathematical Model 

We modelled the change in concentration of chemo-repellent based on "Top Hat Func-

tion" for a diffusion problem: 

 

Equation 2:1 Chemo-repellent diffusion problem 
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 v M is chemo-repellent concentration,
2m

D
s

 
 
 

is chemo-repellent diffusion coefficient, 

 N mol is the number of repellent atoms, 
2A m   is the cut section of the channel, [m]h  is 

the height if the channel,  x m is the distance on the channel and  t s is time. 

The solution for this problem is: 

2 4 4

ov x h x h
v erf erf

Dt Dt

     
     

    
 

Equation 2:2 General solution for chemo-repellent diffusion problem 

 

Graph 2:1 Chemo-repellent concentration: top hat diffusion 

In our problem, we want the diffusion to start from 0x  . Also, we take into account only 

the positive distance: 

2

2 4 4

ov x h x
v erf erf

Dt Dt

    
     

    
 

Equation 2:3 Chemo-repellent concentration 

2.2 Model Results 

We ran the chemo-repellent concentration equation in matlab (The code is in ap-

pendix). The parameters used: 

Symbol Value 

0v   0.00012 M  

D *  2
91.632 10

m

s

  
  

 
  

h **  47.96 10 m  

Table 2:1 Parameters for diffusion model 

*This is the diffusion coefficient for potassium permanganate (see "Comparison to Experiment") 

** Sample volume

Reservoir cut section
h 
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The output for different times: 

 

Graph 2:2 Model for chemo-repellent concentration 

The change in distance of the diffusion limit between 0 to 15 minutes, is relatively big. As 

the time passes the diffusion limit's speed lowers significantly and the concentration, be-

comes more linear. 

2.2.1 Comparison to Experiment 

Most diffusion experiments need a dedicated system that is based on the diffusion 

of an isotope or a fluorescent material that can be detected easily and very precisely. In 

this case, we chose a more basic system given that this is only a preliminary testing as our 

goal is showing that the overall system behaves as we expect.  

The experiment ran as shown in the "Introduction" section: The channel was filled with bac-

teria in motility buffer and then the sample was inserted. We replaced the motility buffer 

with water and the chemo-repellent with potassium permanganate in the following 

amounts: 

Substance Amount 

Tap water  200 l  

Potassium permanganate solu-

tion  0.00012 M  
 10 l  

Table 2:2 Substance for diffusion experiment 

Motility buffer is mostly water (98%) and can be modelled by it. Potassium permanganate 

is a salt with a known diffusion limit and acts as most of the materials we want detect using 

our system (small molecules). Also, it has a very distinct pink color in low concentration 

which makes diffusion limit visible.  

We ran the experiment 4 times, with a standard ruler to measure the distance of the diffu-

sion limit.  
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Figure 2:1 Diffusion of potassium permanganate in water in different times (enhanced picture) 

As expected by the mathematical model, the diffusion limit starts moving relatively fast 

and its speed decreases rapidly. The difference in distance between the models to the 

experiment can be explained by: 

 The actual diffusion limit is in too low of concentration of potassium 

permanganate to be seen in the naked eye. If the visible concentra-

tion is about  0.000015 M  the experiments results lines up with the 

model. 

 The roller is a crude measuring tool. Its mistake is  0.5 mm . 

 Difficulties loading the sample in a uniform way, especially in low vol-

umes. Mistakes in loading the sample inside the bacterial fluid and not 

on, or sticking the drop of sample to one of the entry slot walls will 

cause uneven diffusion. 

 

Graph 2:3 Compression diffusion model  0.00015[ ]c M  to experiment 
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 Bacterial Concentration 

The basic mathematical model for bacteria chemotaxis is the Keller-Segal equa-

tions of chemotaxis: 

      1 2 3, , ,
u

k u v u k u v u v k u v
t


     


 

Equation 3:1 Keller-Segal equation 

 u M is bacteria concentration,  v M is chemo-repellent concentration, 
2

1

m
k

s

 
 
 

is bacte-

ria diffusion coefficient, 
2

2

m
k

M s

 
 

 
is bacteria chemotactic coefficient, 3

M
k

s

 
 
 

is bacteria 

life and death,  x m is the distance on the channel and  t s is time. 

The base assumptions for model for the chemo-repellent are: 

 2k  describes how sensitive is the bacteria to changes in chemo-

repellent concentration. In other words, as its negative value de-

creases the bacteria will react more violently to same repellent expo-

sure.   

 Because of the geometric properties of the channel, this is approxi-

mately a one dimensional problem. 

 We ran our tests in a short time scale   30 mint  so we presume that 

the change in concentration of bacteria due to life and death is neg-

ligible, 3 0k  . 

 The chemo-repellent concentration is known for every x  and t . 

 There are no changes in bacteria concentration at the start (a) and 

at end of the channel (b). 

3.1 Mathematical Model 

Under these assumptions the equation takes the form: 
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   

   

2
' ''

1 2 22

,

0, 0 0

0 0

x xx

end

u u u
k k v k v u

t x x

u
t t a

x

u
x t t b

x









  
  
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


 



 


 

Equation 3:2 Bacteria concentration problem 

The above partial differential equation cannot be solved analytically, so we must turn to 

numerical analysis tools. The implicit Euler method is one of the most basic numerical 

methods for the solution of ordinary and partial differential equations. This method is guar-

anteed to be stable and gives us the solution for the entire space in a single point in time. 

Using the following discretization: 

 

 

  

 

The equation takes the following discrete form: 

 

1 1 1 1 1 1
' '' 11 1 1 1

1 2 22

2

2

r r r r r r r
ri i i i i i i

x xx i

u u u u u u u
k k v k v u

t xx

     
      

  
 

 

     

' '
'' 1 1 12 21 1 1

2 1 12 2 2

21 1

2 2

r r r rx x
xx i i i i

k v k vk k k
k v u u u u

t x x tx x x
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 

     
             

               

 

And we can write it as follow: 

 

 

 

 

'

21
sub 2

''1
diag 22

'
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
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






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 



  
 


   
 

 
 

  
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Equation 3:3 Bacteria concentration problem – Final Form 
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With the starting condition:  

( ,0) 1u x x   

Equation 3:4 Bacteria concentration problem starting condition 

And the boundary conditions which translate to the following discrete conditions: 

1 1

1 1

1 1

0 2

r r

I I

r r

u u

u u

 

 

 

 




 

Equation 3:5 Bacteria concentration problem boundary conditions 

With I being the final value of i – index of location. 

The above conditions keep the flux of bacteria zero on both sides of the chip as is the 

case in the actual chip, no bacteria enter or exit the chip during the run. 

The above equation was entered into the Thomas-Three-Diagonal algorithm for solving 

matrix equations, giving us the solution for the entire space of the problem in a specific 

point in time. By advancing in time as we solve the equation at each time point we get 

the solution for the bacterial concentration for every ,x t . 

3.2 Model results 

We ran the chemo-repellent concentration equation in matlab (The code is in ap-

pendix). The parameters used: 

Symbol Value 

0v  1 (normalized) 

1k   
10−8.4  [

𝑚2

𝑠𝑒𝑐
] 

2k   
−10−8  [

𝑚2

𝑠𝑒𝑐
] 

Table 3:1 Parameters for chemotaxis model 

Notice, the results are normalized to enables us to show them on the same scale.  
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The results are as follows: 

 

Graph 3:1 Model for bacterial chemotaxis 

Model conclusions: 

 The peak of bacterial concentration is caused by the bacterial 

chemotactic response, moving away from the chemo-repellent, and 

concentrating. 

 The "wave" of bacterial concentration starts moving relatively fast, 

and slows down quickly. This is due to the change in repellent concen-

tration. The "wave" converges to  ~ 7 mm  

 The bacteria react significantly less to a normalized repellent concen-

tration of less than ~ 0.3 . This is approximately where the two graphs 

intersect.  

 As the concentration of repellent goes down, the bacteria are less re-

active. This continues as the bacteria's diffusion speed surpasses the 

chemotaxis rate. In other words, more bacteria move away from the 

concentration peak than into it for 15[min]T   
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 Projecting this on the chip color experiment, we can predict there will 

be three shades of color: weak where the bacteria moved from (low 

concentration), strong where the bacteria moved to (high concentra-

tion) and on the far end, unchanged as the bacteria were not ex-

posed to the repellent. 

3.2.1 Comparison to Experiments 

The experiment ran as shown in the "Introduction" section: The channel was filled 

with bacteria in motility buffer and then the sample was inserted. We used engineered E. 

coli with a S.Tar PctA receptor taken from a plate and suspended in motility buffer. The 

chemo-repellent used is TCE. 

Substance Amount 

E. coli with a S.Tar PctA receptor 

in motility buffer 
 180 l  

TCE  30 l  

Table 3:2 Substance for chemotaxis experiment 

 

Figure 3:1 Chemotaxis of E. coli with a S.Tar PctA receptor due to exposure to TCE (enhanced picture) 
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As expected, a visible cluster of strong dark blue has formed next to a lighter shade due to 

chemotactic activity. Furthermore, the distance the bacteria passed is only a few millime-

ter as the model predicted. 

The time scale does not line up: The color darkens as the experiment continues. This will 

probably be corrected by using more accurate diffusion and chemotactic coefficients.  

Some of the inconsistencies between the model and the experiment (like the uneven clus-

ter of colored bacteria) can be explained by problems loading the chemo-repellent as 

shown in the chemo-repellent concentration experiment. 
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 Conclusion 

4.1 Achieved results 

This model predicts the overall behavior of our system. In our experiments we 

were able to show that the concentration of the repellent acts as we expected in terms of 

changes in the diffusion limit's velocity. When compared to the bacterial concentration, 

again, the experiments showed a similar behavior as the numeric solution of Keller-Segal 

equation. 

As explained before, this model requires further fitting to get more accurate results. Not 

only by using more accurate coefficients, but with improving the system itself.      

4.2 Future development 

We would like to improve the model and design new ones based on it. First, devel-

op models for the different coefficients in the Keller-Segal equation: bacteria diffusion co-

efficient, chemotactic coefficient and bacteria life and death. Ideally, finding ways to 

control these coefficients by changing such things as the number of flagella or receptors 

a cell has, or even manipulating the biological tracks of the bacteria. This will enable us to 

get even more accurate results. Second, to build a library of different receptors and tar-

get materials the bacteria react to. Third, expanding our model so it could predict move-

ment of bacteria in different geometric constructs such as funnels or U-bends. This re-

search can be the basis of a prototype commercial device. 

As for the first part, we worked with iGEM Freiburg in developing a function for the chemo-

tactic coefficient. Also, we designed a new assay for experimentally measuring it.  

This assay, named Trap & Track is a novel way to detect chemotaxis on the nanometric 

level. By using it we can measure the exact repellent concentration that induces chemo-

taxis and calculate the chemotactic coefficient accurately for every material. A detailed 

explanation about the assay can be found here (link to best measurement page on the 

wiki). 

As for the second part, The S.Tar system enables us to change the receptors a bacterium 

has and by that, change the materials it repels from. In the future, this system can be ex-

panded to control the efficiency of these receptors and even control other aspects of the 

chemotaxis pathway such as the flagella.  

The third and final part is to improve the device itself. We designed a new fluidic chip and 

fabricated it in different methods (Link to design page). This new design will give us a more 

controlled diffusion by cancelling out most of the flow and fixing the diffusion source. Also, 

by changing the geometry of the channel, the bacteria concentration will increase and 
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cause a more noticeable signal. This will improve the accuracy of the experiments we run, 

and in turn, our overall model.  
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Appendix 

Chemo-repellent Matlab code:  

clear all; 

close all; 

clc; 

 

% This model was designed and created by iGEM Technion 2016  

 

% The model simulates the change in repellent concentration in a confined space. 

 

% For a detailed explanation about this model and more information 

% about our project please visit: http://2016.igem.org/Team:Technion_Israel 

 

x = -0.01:0.00001:0.01;%Distance - m 

t = 0.001:60:3600;%Time - sec 

v0 = 0.00012;%Startin Concentration - C 

D = 1.632*10^(-9);%Diffusion Constant - m^2/sec 

h = 7.96*10^(-4);%Height of the sample in the entry slot - m 

 

figure; 

% The plot is animated to present the reaction over time 

 

 

for i = 1:length(t); 

    v(i,:) = (v0/2)*(erf((x+2*h)/sqrt(4*D*t(i)))-(erf((x)/sqrt(4*D*t(i))))); 

    if i >= 2 

      set(p1(i-1),'Visible','off'); 

    end 

    grid on 
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    p1(i,:) = plot(x,v(i,:),'Color','black'); 

    xlabel('Distance [m]','fontsize',26); 

    ylabel('Concentration [M]','fontsize',26); 

    title('Repellent Concentration','fontsize',26); 

    ylim([0.000015,0.00004]); 

    xlim([0,0.003]); 

    getframe; 

     

end 

 

Chemotaxis Matlab code:  

model: 

close all; 

clear all; 

clc; 

 

% This model was designed and created by iGEM Technion 2016  

 

% The model simulates the chemotactic reaction of a bacterial 

% population to a repellent in a confined space. 

 

% For a detailed explanation about this model and more information 

% about our project please visit: http://2016.igem.org/Team:Technion_Israel 

 

S = 0.0532; % length of the channel 

 

% The function bacterial_conc calculates the repellent and bacteria 

% concentration for all points in time and space 

 

[x,t,v,U] = bacterial_conc(1,2702, S, 100, 1000, 10^-8.4, -10^-8); 
%t_start,t_final,x_final,t_points,x_points,k1,k2 
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figure; 

 

% The plot is presented as normalized concentration vs location in the 

% channel. The plot is animated to present the reaction over time 

 

 

for i = 2:(length(t)-2)   

    % The following if statement removes plot lines from previous time 

    % points. 

    if i >= 3 

       set(p1(i-1),'Visible','off'); 

       set(p2(i-1),'Visible','off'); 

    end 

    p1(i) = plot(x,U(i,:),'Color','red','Linewidth',2); 

    grid on 

    xlabel('Distance [m]','fontsize',26); 

    ylabel('Normalized Concentration [x*c0]','fontsize',26); 

    title('Repellent & Bacterial Concentration','fontsize',26); 

    xlim([0,0.004]); 

    ylim([0,3]); 

    hold on; 

    p2(i) = plot(x,v(i,:),'Color','blue','Linewidth',1.2); 

    hold off; 

    Lgnd = legend('Bacterial concentration','Repellent concentration','Location','northeast'); 

    set(Lgnd,'FontSize',16); 

    getframe; 

     

end 

repellent_conc: 

function [ v,x,t,dv1,dv2 ] = repellent_conc( t_start, t_final, x_final, t_points,x_points ) 
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% The purpose of this function is to calculate the repellent concentration 

% and its first and second derivatives for all x and t.  

% Repellent is assumed to diffuse into the channel, resulting in a top hat 

% function. 

 

%Diffusion 

    t = linspace(t_start,t_final,t_points); %Time - sec 

    x = linspace(0,x_final,x_points); %Distance - m 

    D = 1.632e-9; %Diffusion Constant - m^2/sec 

    h = 7.96*10^-4; %Height of the sample in the entry slot - m 

    v = zeros(length(t),length(x)); 

    dv1 = zeros(length(t),length(x)); 

    dv2 = zeros(length(t),length(x)); 

    for i = 1:length(t); 

        for r = 1:length(x) 

            v(i,:) = (0.5)*(erf((x+2*h)/sqrt(4*D*t(i)))-(erf((x)/sqrt(4*D*t(i))))); 

            dv1(i,r) = (0.5)*(-exp(-(-h+x(r))^2/(4*D*t(i)))./(sqrt(pi*D*t(i)))+exp(-
(h+x(r))^2/(4*D*t(i)))./(sqrt(pi*D*t(i)))); 

            dv2(i,r) = (0.5)*((x(r)-h)*(exp(-(-h+x(r))^2/(4*D*t(i))))/(2*D*t(i)*sqrt(pi*D*t(i)))-
((x(r)+h)*exp(-(h+x(r)).^2/(4*D*t(i))))/((2*D*t(i)*sqrt(pi*D*t(i))))); 

        end 

    end 

bacterial_conc: 

function [x,t,v,U] = bacterial_conc( t_start, t_final, x_final, t_points, x_points, k1, k2 ) 

 

% The purpose of this function is to calculate the bacterial concentration 

% in the channel for all x and t. To do this, the function calls the 

% function repellent_conc which return the repellent concentration. 

 

% This function uses a The backwards Euler method - an implicit numerical method 

% to solve the partial differential equation which describes chemotaxis. 
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% In Backwards Euler, a matrix A is built to march the finite difference 

% solution forward in time. In each time step the matrix contains the 

% bacterial concentration for the entire space. The solution then becomes a 

% simple matrix equation: U_tk_1 = inverse(A)*(U_tk + b): 

% U_tk_1 being the bacterial concentration for the entire space in the 

% next time point.  

% U_tk is the bacterial concentration in the current time point 

% b represents a vector with boundary conditions 

 

% To perform the matrix inversion we use the Thomas-Three-Diagonal 

% algorithm.  

% We thank Mr. Zvi Hantzis from the faculty of mechanical engineering 

% in the Technion for sharing with us the implementation of this 

% algorithm. 

 

 

% using an implicit numerical method 

S = x_final; % length x-direction 

 

n = x_points; % number of points in x 

m = t_points;  % number of points in t 

 

dx = S/n;  

dt = t_final/m; 

 

[v,x,t,diff_v,diff2_v] = repellent_conc(t_start,t_final,x_final,m,n+1); 
%t_final,x_final,t_points,x_points 

% v = repellent concentration 

% diff_v = first derivative of v 

% diff2_v = second derivative of v 
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% Dirichlet boundary conditions through vector b 

b= zeros(1,n+1); 

 

%start condition 

U_tk = ones(1,n+1); 

U=zeros(m,n+1); 

U(1,:) = U_tk; 

 

% U_tk_1 = inverse(A)*(U_tk + b): 

for i = 2:m-2 

    for r = 1:n+1 

        if r == 1 || r == 2  

            Asubs(i,r) = -k1/(dx^2)-(k2/(2*dx))*diff_v(i,r); 

            Adiag(i,r) = 1/dt+2*k1/(dx^2)+(k2)*diff2_v(i,r); 

            Asuper(i,r) = Asubs(i,r); 

        elseif r == n+1      

           Adiag(i,r) = 1/dt+2*k1/(dx^2)+(k2)*diff2_v(i,r); 

        else 

           Asubs(i,r) = -k1/(dx^2)-(k2/(2*dx))*diff_v(i,r); 

           Adiag(i,r) = 1/dt+2*k1/(dx^2)+(k2)*diff2_v(i,r); 

           Asuper(i,r) = -k1/(dx^2)+(k2/(2*dx))*diff_v(i,r);  

        end 

    end 

     

    %b(n+1) = -Asuper(i,end); 

    U_tk_1 = ThomasTriDiag(Asubs(i,:),Adiag(i,:),Asuper(i,:),b+(U_tk)./dt); 

    U(i,:) = U_tk_1; 

    U(i,1) = U(i,2); 

    U(i,3) = U(i,2); 

    U(i,end) = U(i,end-1); 
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    % for next time step - march solution forward in time 

    U_tk = U_tk_1; 

End 

ThomasTriDiag: 

function x=ThomasTriDiag(a,b,c,d) 

  

% Function to solve A*x=B by Thomas algorithm where the matrix a is 

% a tridiagonal matrix, N by N: 

% A(1,:)=[b(1),c(1),     0,0,...              ,0   ] 

% A(2,:)=[0,   b(1),c(1),0,0,...              ,0   ] 

% : 

% : 

% A(i,:)=[0,0,..,0,a(i),b(i),c(i),0,0,...    0,0   ] 

% : 

% : 

% A(n,:)=[0,0,...                   0,0,0,a(N),b(N)] 

% B(i)=d(i) 

 

% Input: 

% a: Vector of length N - 1 containing the subdiagonal. 

% b: Vector of length N containing the diagonal. 

% c: Vector of length N - 1 containing the superdiagonal. 

% d: Vector of length N containing the right hand side. 

  

% Output: 

% x Solution of A*x=B, Vector of length N. 

 

%% Forward elimination: 

N=length(d); 

 

for i=2:N 
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    temp=a(i-1)/b(i-1); 

    b(i)=b(i)-temp*c(i-1); 

    d(i)=d(i)-temp*d(i-1); 

end 

  

%% Backward substitution: 

x(N)=d(N)/b(N); 

for i=N-1:-1:1 

    x(i)=(d(i)-c(i)*x(i+1))/b(i); 

end 

return; 


