
Modelling Collaboration 

The 2016 iGEM team of the Technion institute of technology came up with the idea to compare 
their molecule sensing system based on chemotaxis to aerotaxis, to gain a deeper understanding of 
bacterial taxis. This is where we, the iGEM team 2016 Freiburg, stepped in and offered our help 
with the modelling part. 

“Aerotaxis is a particular form of ‘‘energy taxis’’. It is based on a largely elusive signal transduction 
machinery. In aerotaxis, oxygen dissolved in water plays the role of both attractant and repellent.” 
[1] 

To be more specific, we tried to reproduce a mathematical model of the spatial gradient assay for 
aerotaxis. 

Aerotaxis is mainly dependent on four equations. 

The first equation describes the oxygen concentration dependent on time and place. With 
L=function of oxygen concentration, D=diffusion constant of oxygen, kappa=rate of oxygen 
consumption per cell and b=bacterial density. 

The step function ensures, that there is no oxygen consumption when the oxygen concentration 
drops below zero. The oxygen concentration is the main factor that has an influx on the bacterial 
metabolism. The bacterial cell can sense its internal energy by signalling pathways, which control 
the movement of the bacteria. 

The movement of the bacteria can be predicted by assuming, that the bacteria can only move from 
left to right. The function frl describes the change from left to right and logically flr describes the 
change from right to left. With v=speed of the bacteria and E=maximal internal energy minus 
minimal internal energy. 



With these two equations we can calculate the total amount of bacteria moving either left or right. 
r[t,x] describes the bacteria moving to the right and l[t,x] and describes the bacteria moving to the 
left. 

Now, we can calculate the density b[x,t] of the bacteria with this simple equation. 



Modelling in Mathematica 

Calculation of the oxygen concentration 

L'[t, x], t =d*L''[t, x], x - Kappa*Stepwise function[{0, L[t, x] <= 0}, {1, L[t, x] > 0}]*b  

L[t, x]=function of oxygen concentration 

d=diffusion constant 

Kappa=rate of oxygen consumption 

b=bacterial density 

L[t,x] is found by numerical solving of the equation (1), followed by the integration of interpolation 
function, resulting in this oxygen distribution over time. 

Fig. 1: oxygen concentration over time and place 

{D=2*10^-9, kappa=10^-6, b=10^4} 

As you can see the bacteria are consuming the oxygen over time. We assume that the oxygen only 
comes form the left side, because we are simulation a spatial gradient assay for aerotaxis. This is 
approximated by choosing special initial conditions. 

Calculation of the internal energy E 

Out of the oxygen concentration we can calculate the internal energy. The internal energy is defined 
by the following conditions. 



 

x=oxygen concentration 

llmax=Upper detectable oxygen concentration 

lmax=Upper favorable oxygen concentration 

Emax=favorable oxygen concentration 

lmin=Lower favorable oxygen concentration 

llmin=Lower detectable oxygen concentration 

These conditions where concluded from the figure 2(a). [1] 

Resulting in this change of the internal energy over time. 

Fig 2. Internal energy over time and place with the previously calculated values 

{llmax=0.1, lmax=0.4, lmin=0.5, llmin=0.9, Emax=lmax - llmax} 

Here you can see that Emax is reached approximately at t=50. At this point the bacteria would not 
search further for an optimal oxygen concentration because their metabolism is already at their best. 
Above t=50 the oxygen concentration is to low so that oxygen is working like an attractant. Below 
t=50 the oxygen concentration is to high so that oxygen is working like a repellent. As opposed to 
aerotaxis, chemotaxis only works as repellent or attractant.



Summery 

Through our project, we gave the iGEM team of the Technion institute of technology an opportunity 
to view their project from a different perspective and also giving them an even deeper insight into 
the world of bacterial taxis. 

By making a few small changes to the equations, the system of equations is transposable to 
chemotaxis. The best and most impacting example would be: excluding the conditions {lmax <= x 
< lmin, Emax}, {lmin <= x < llmin, ((Emax/(llmin - lmin))*(-x + lmin)) + Emax} and {llmin <= x, 
0}, so that the bacteria are not searching for the optimal concentration of a substance but instead for 
the highest concentration of a substance. 

[1]=Mazzag, B. C., I. B. Zhulin, and Alexander Mogilner. "Model of bacterial band formation in 
aerotaxis." Biophysical journal 85.6 (2003): 3558-3574. 

Code:

Condi = {
   d -> 2*10^-9,
   \[Kappa] -> 10^-6,
   b -> 10^4
   };

tmax = 200;
xmax = 4;

llmax = 0.1;
lmax = 0.4;
lmin = 0.5;
llmin = 0.9;
Emax = lmax - llmax;

equ = {
   
   D[L[t, x], t] == 
    d*D[D[L[t, x], x]] - \[Kappa]*
      Piecewise[{{0, L[t, x] <= 0}, {1, L[t, x] > 0}}]*b
   };
Init = {
   L[0, x] == 1,
   L[t, 0] == 1
   };
last = Join[equ, Init] /. Condi;
solo = NDSolve[last, {L[t, x]}, {t, 0, tmax}, {x, 0, xmax}];
Plot3D[{L[t, x] /. solo},
 {t, 0, tmax}, {x, 0, xmax}, 
 AxesLabel -> {"t", "x", "Oxygen conzentration"}, PlotRange -> All, 
 ImageSize -> 700]
Table[{L[t, x] /. solo}, {t, 0, tmax}, {x, 0, xmax}] // MatrixForm;
k = Flatten[Table[{L[t, x] /. solo}, {t, 0, tmax}, {x, 0, xmax}]];



sign[x_] := Which[
   x < 0, 0,
   0 <= x < llmax, 0,
   llmax <= x < lmax, (Emax/(lmax - llmax))*x - llmax,
   lmax <= x < lmin, Emax,
   lmin <= x < llmin, ((Emax/(llmin - lmin))*(-x + lmin)) + Emax,
   llmin <= x, 0
   ];
j = sign /@ k;
ArrayReshape[j, {tmax, xmax + 1}] // MatrixForm;
ListPlot3D[ArrayReshape[j, {tmax, xmax + 1}], 
 AxesLabel -> {"x", "t", "Internal Enegy"}, ImageSize -> 700]


