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Abstract

In this work we analyse properties of generated Salmonella Typhimurium minicells from
the ”Target Taxi” project of the iGEM team of the Humboldt Universitdt zu Berlin 2021.
We evaluate experimental data in conjunction with already established literature to estimate
the lifetime of these minicells after extraction. This lifetime is important because it focuses
on the time frame in which the minicells are able to deliver anti cancer agents to infected
tissue.

1 Methods

1.1 Production process of the minicells

Can be found in the iGEM wiki section of our web lab team. The python code can be found in 4

1.2 Size Distribution

We consider the diameter d of a cell in a population as a random variable. We make the
assumption that the probability density P(d) of these measures in the produced cell population
corresponds to a log normal distribution
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We plot the distributions for filtered 1la and unfiltered 1b minicells. The probability of obtaining

a minicell in asymmetric cell division can be calculated by an integral over the accepted interval
[a, b]:

p(a<d<b):/bP(d) dd 2)

The accepted interval for the diameter we set between 0.4 pm and 0.6 pm. The probability
of finding a minicell in the filtered distribution was estimated to be 0.39. For the unfiltered
distribution we obtain a probability of 0.28.
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Figure 1: Size distribution of (a) filtered and (b) unfiltered minicells, including logarithmic
normal distribution fit

In the next step, we want to quantify how many functional minicells are produced in the
process on statistical average. We model this with a binomial distribution, where n is the total
number of cells after the asymmetric cell division and k is the number of functional minicells.
The probability function is given by

N -n,n
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The expected value (n) of produced minicells increases linearly with population size:

(n)=N-p (4)

For large N and n < N the probability can be approximated by the Poisson distribution

<n>n —(n)
B(n|p,N) ~ e (5)
The number of minicells produced as a statistical mean provides an information of the cell
population required for production of the anti-cancer peptid in sufficient amounts at the site of
action, i.e. at cancer cells that are aimed to be treated.
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Figure 2: binomial distribution for (a) unfiltered distribution and (b) filtered distribution with
N = 300
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1.3 Life span

We consider the metabolic rate 8 for biological systems, where thermal equilibrium is assumed.
The metabolic rate has the physical dimension of a power, that is energy per time. Gillooly et al.
[4][5] derived a general model based on the principles of biochemical kinetics and allometry, which
describe the influence of absolute temperature 7" and organism mass m. They give the following
equation for the mass-specific metabolic rate 3,,, summing over all biochemical reactions of

metabolism:
8 S E; _
Bm = m = (50 ;:1 exp <I<:BT)> m~* (6)

Here E; denotes the average activation energy for the respective rate-limiting enzyme-catalyzed
biochemical reaction of metabolism, T' the absolute temperature in Kelvin, kg the Boltzmann
constant, m the mass and 6 a . [y is a constant to be determined of dimension J - sec - kg_e. In
the following, these equations will be applied to minicells derived from Salmonella Typhimurium.
We make the assumption that the geometry of the minicell can be approximated by a sphere
surface with radius r respective diameter d = 2r. Furthermore, we assume a homogeneous
density distribution, which results in the following equations for the minicell mass, where pg
denotes the density:

m= %WPST?) = %PsdB (7)
The density of Salmonella ps = 1,005 kg - m~3 we approximate by the density of Escherichia
coli [1], since Salmonella and Escherichia coli share similar cell morphology. The parameter
is estimated to be % for unicellular organisms. The lifespan of a biological system is inversely
proportional to its mass-specific metabolic rate. Here, we standardize the prefactor to the Boltz-
mann factor. For notational reasons, we denote the whole prefactor by 7.

~ . —1
7(m) = (kioT ;exp (ksz>> m? (8)

n

However, it is not possible for us to track the lifespan of individual cells, so we use Proton
Motive Force (short: PMF) to determine the average lifespan of a minicell population, where the
accepted range of the diameter and the associated mass are a < d < b and m, < m < my. The
average lifespan 7y determined by PMF can be obtained from the Gillooly equation by averaging
over the accepted range. This allows us to calculate the constant factor n:

U "
o= —1 / m® dm (9)
mpy — Mg Mg
1460 _  1+6
T0 = " . i Ma (10)
1+6 my — Mg
mp — Mg
77:T0(1+0)W (1].)

For unicells (f = +) we obtain

1
1
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2 SIMULATION

Through this we can establish a functional relationship between the lifespan 7 and the diameter

d of the minicell:
d3
m(d) = i/ "= (13)

We estimate the lifetime by fitting an exponential decay of the form (14) to experimentally
measured data.

1.3.1 PMF

I =1Iyexp (—i> (14)
To
exponential fit
In(I) = =Xt + In(Ip) (15)

2  Simulation
We made sure that all of the simulated experiments were conform with the the measurements

from the lab team as well as published literature. The python code for the simulation can be
found below.

Iterate Start

1

Check
t_extract

Normal Create
divisiona salmonella

Check
Salmonella

parameters : _
Asymetric Create

division B minicell

Salmonella
growth

Check minicell
lifetime

Figure 3: Simplified simulation architecture.
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3 Results

This easy to extend model creates dividing Salmonella Typhimurium (Salmonella) cells that
generate minicells who possess a size and lifetime. Thus, this model could be utilized in the
future as a platform to answer many exciting questions in the context of minicell therapy.

For instance the question, whether less, but longer living and in size increased cells can destroy
more or less tumor then many smaller ones. Further and most importantly, these insights will
then be observable in the context of time.

By working closely with our wet lab team, we present a model that is based on already established
literature and supported by additional experiments (such as proton motive force measurements
(PMF)) to generate size and lifetime distributions of minicells.

Here, we compare the influence of two different size distributions of minicells on population and
remaining life expectancy over time.

To simplify the simulation, we assume that the minicells generated during growth equal the final
distribution after purification.

Next, we evaluate the influence of purification on the cell size. For this, we compare the size
distribution of minicells, as they are present in the growing Salmonella culture, to the purified
and filtered counterpart. For simplicity sake the generated data associated with the different size
distributions will be called the filtered dataset and the unfiltered dataset. Filtration was done
with a mesh size of 0.45um.

While asymmetric division of Salmonella into minicell is the only cross interaction of Salmonella
with the minicells is currently implemented, it was important to us that this feature can be
implemented empathized on if needed.

3.1 minicell populations

First, we have a look at the number of minicells during the simulation. Population size differences
during the stationary phase is due to the statistical nature of our model, although the influence
of minicell size on Salmonella growth and therefore the minicell population after purification is
really difficult to quantify. Still, we observe that the set of unfiltered minicells survives longer
than the unfiltered one.

However, the behaviour of the population can be misleading when thinking about size and life
expectancy as the next subchapters will show.
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Figure 4: minicell population overtime

3.2 size heat map

Here we can observe that due to a minimum minicell lifetime of 37 h (minimal cell size = 200
nm), the minicell size stays stable for the first third of the runtime. After this time period the
stability is lost. Thus, filtered minicells slowly degrade while small (<400 nm) and large (>600
nm) minicells dominate in later time periods.
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Figure 5: Minicell size distributions during the simulation for each timepoint. Y-axis is binned
into 10 nm groups. The brighter the image is the higher the amount of minicells with a diameter
within the range of the bin.

Strikingly, we observe a huge amount of abnormal large minicells (600 nm and more) in the later
time stages for the unfiltered dataset.

In other words, the filtered minicells degrade in a specific pattern which results in increased
amounts of small (late birth) and large (stable ones) minicells surviving at late stages. In con-

Humboldt-Universitat zu Berlin 6 Minicells



3.3 remaining lifetime heat map 3 RESULTS

trast, the unfiltered minicells degrade continuously.

3.3 remaining lifetime heat map

Looking into the age distribution, the observation from the size simulation gets strengthened.
This can be traced back to the approximately linear relation for minicell sizes between 100 - 200
nm diameter and the age distribution.
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Figure 6: minicell population overtime
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Figure 7: Fig. 5 Lifetime - size relationship for the allowed range of 200 to 1000 nm minicell
diameter.
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3.4 lifetime expectancy

When comparing the mean remaining lifetime of minicells for both datasets (filtered and unfil-
tered), the overall lifetime expectancy is higher in the unfiltered one, but draws after 110 hours.
This allows us to observe that filtration has no influence on how long the average population
survives after purification, although it does influence how many minicells are present in early
and mid time periods.

The lifetime of minicells are the same for both datasets at the end of the simulation, indicating
that the size distribution has no influence on total survival duration of total minicells. On the
other hand, we see that size distribution has an influence on the amount of minicells that is
present up to 80 hours.
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Figure 8: Remaining lifetime distribution for every minute. Bin size in y-axis is 1h. The brighter
the image the higher the amount of minicells with a remaining life expectancy within the range
of the bin.

3.5 theoretical background

Briefly we base our model mainly the findings of Gillooly et al [4,5], who allows us to directly link
the size of the minicell to its lifetime. Furthermore we use other literature sources to choose the
parameters for division frequency of modella [2] and death rate [3]. Additionally we approximate
the density of salmonella to be the same of Eugela Coli [1].

3.6 possible further development

We see great potential in Model P to act as a platform to answer arising questions in the fu-
ture, especially when combining expression efficiency, purification, drug delivery and application
optimization for bacterial minicells.

Explicit idea for further development:

Approach: Use experimental measure of expression capacity and directly like it to size via
surface area
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Potential Insight: allows for model of protein density on minicell surface and quantification
of incubation time of drug agents.
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4 PYTHON CODE

4 Python Code

#!/usr/bin/env python
# coding: utf—8

# # Simulation

# In[13]:

import pprint as pp

import os

import matplotlib.pylab as plt
import random as rd

import numpy as np

import matplotlib.pyplot as plt
import scipy.ndimage as ndimage
import math

# ### FEvaluation with salmonella as number

# In[14]:

#Calculate Values

¢ = 0.03432 % 60 # to per min measured experimentally
#c = 0.015 / 360 # old measure

roh = 1105 # in kg / m"8 Literature

romin = 75%x10%xx—9 # in m

r.max = 500%10xx—9 # in m

eta = 1/c * 5/3 % roh * ( r.max*x3 — r_min**3 ) % ( r.max*x(15/4) — r_minxx(15/4) )x*+
delta = ( math.pi * 1/6 * roh ) *x ( 1/4 )

def get_tau(diameter): # return in minuite steps
d = diameter
return eta *x delta = d *x (3/4)

# time
t-max = 150 % 60 # Simulation will run for 150 h
t_extract = 180 # culture is done for 8 h according to Lab protocoll

# initial values and rates:

alpha = 0.01 # Literature, salmonella pop. grows with 1% per min [1%—10%]
beta = alphax1/2 # Assumption from counting from the experiment "time series”
gamma = 0.0086 /1000 # Measured from time_lapse recording with delta t = 15min
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deathrate= 0.0045 # Assumption, salmonella dye with 0.45% per timestep
n_salmonella = 1000 # Assumption we start with Imio salmonella cells

# Print a sainity check for a few sizes
1 = [200, 300, 400, 500, 600]
for d in 1:
print ( ’diameter’,d, 'nm\n’,’\u03C4:.’, round(get_tau(d+10%x*x—9)/60), h\n’)

# In[15]:

# Define Minicells and Salmonella
class Minicell:
def __init__(self, size, age):
self.age = age
self.size = size

class Salmonella:
def __init__(self, _size, _age):
self.age = _age
self.size = _size

# Define functions

def get_size ():
size = 0

while size < 200 or size >1000: # keep size between 200 and 1000

size = (np.random.lognormal (0.3941, 0.1442) —1 )%x1000 # Use this for filtered
#size = (np.random.lognormal (0.5296,0.1831) —1 ) % 1000 # Use this for wunfilt

return round(size)

def salmonella_growth(_size):

return _size * gamma/1000 % ( 5000 —_size ) +_size

def get_salmonella_size (): # create salmonella that is between 1 and 5 um
x = rd.randrange (1000,5000)
#print (z)

return x

# In[16]:
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#H# import pandas as pd

# Utility definitions
phase = ’'growth’
mini_plot = []
parent_plot = []

mini_list = []
mini_series = []
salmonella_list = []
salmonella_series = []

# Add starting salmonellas
for i in range(n_salmonella):

salmonella_list .append(Salmonella(get_salmonella_size (), 0))

# Let s Iterate
for t in range(t_max):

# Check if keep simulation running is a good idea
if t > t_extract and mini_list = []:

#only run as long as minicells remain
break

# Define extraction
if t >= t_extract:
phase = ’extraction’

spontainious_kill []

# salmonella grow and create minicells and other salmonella in growth phase:
if phase = ’growth’:

for salmo in salmonella_list:
# salmonella divides into salmonella

# Only those above 2 um length may divide

into normal cells
if salmo.size > 2000:

# Probability of division beta per timestep
if rd.random() < alpha:

# Create new salmonella
salmonella_list .append(Salmonella(salmo.size /2, t))

# update old salmonella
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salmo.size = ( salmo.size / 2 )
salmo.age = ¢

# salmonella divides into minicell

# only that are 2 um or bigger

if rd.random() < beta:
mini_size = round(get_size ())
tau = get_tau(mini_sizex10%xx—9)
mini_list.append(Minicell (mini_size ,t+tau))

# Salmonella cell does not refresh
salmo.size = salmo.size — mini_size

#Spontainious death
if rd.random() < deathrate:
spontainious_kill.append (salmo)

# let salmonella grow:
for salmonella in salmonella_list:
if salmonella.size <= 5000:
salmonella.size = salmonella_growth (salmonella.size)

# FErxecute spontanious death
for i in spontainious_kill:
salmonella_list .remove (i)

# kill minicell , dependet of age:
if mini_list != []: # there have to be minicells at the timepoint
kill_list = []
for i in range(len(mini_list)): # check every minicell that is currently aliv
lifetime = mini_list[i].age
#print (age_of_-minicell)
if t>= lifetime:
kill_list .append(mini_list[i]) # add minicell object to list to be re

#print (kill_list)
for i in kill_list:
mini_list.remove(1i)
#print (' Cycle Complete ’)

# Decide what variables to extract and plot
mini_plot.append(len(mini_list)) # minicell count
parent_plot.append(len(salmonella_list)) # salmonella count

mini_series.append(mini_list.copy()) # all data for each timepoint
salmonella_series.append(salmonella_list.copy())

print ( ’SIMULATION_COMPLETE” )
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# ## Lets Add salmonella as objects that split and grow on their own
#

# # Plot size and age distributios at the end of simulation

# ## Plot populations

# In[17]:

# — plot population count of minicells and samonella —

plt.figure (dpi = 100)

plt.title (’minicells’)

plt.ylabel (’time_in._min’)

plt.plot (mini_-plot)

plt.ylabel (’number_.of_minicells ")
plt.savefig(’graphics/minicell _population_over_time.pdf’)

plt .show ()

plt.figure (dpi = 100)

plt.plot (parent_plot [: t_extract + 20])

plt.title (’Salmonella_in_growth._phase’)

plt.xlabel (’time.in._min’)

plt.ylabel ('number_of_salmonella )
plt.savefig(’graphics/salmonella_population._over._time.pdf’)
plt .show ()

# In[18]:

# — plot size distribution for selected timepoints —

size = []
age = []

#print (mini_series [2000])
for i in mini_series [2800]:
size .append(i.size)
age.append (i.age)

plt.figure(dpi = 100)

plt.violinplot (size)

plt.title (’Size_in_silico_minicells_at_2800_min")
plt.ylabel (’diameter_in._nm’)
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plt.xticks ([])
plt.savefig(’graphics/Size.in.silico.minicells_at.2800._min.pdf")
plt .show ()

plt.figure(dpi = 100)

plt.violinplot (age)

plt.title ('Death.at_t_.in.silico.minicells._.at.2800._.min’)

plt.ylabel (’t.in_model )

plt.xticks ([])
plt.savefig(’graphics/Death_at_t_in_silico_.minicells_at_2800_min.pdf’)
plt .show ()

for i in mini_series[4500]:
size .append(i.size)
age.append(i.age)

plt.figure(dpi = 100)

plt.violinplot (size)

plt.title (’Size_in_silico.minicells_.at.4500._.min’ )
plt.ylabel(’diameter._in._nm’)

plt.xticks ([])
plt.savefig(’graphics/Size_in_silico._minicells_at_4500_min.pdf’)
plt .show ()

plt.figure(dpi = 100)
plt.violinplot (age)
plt.xticks ([])

plt.title (’Death_at_t.in.silico.minicells.at.4500._min’)
plt.savefig(’graphics/Death_at_t_in.silico_.minicells_.at_.4500_min.pdf’)
plt.ylabel (’t_.in_model )

plt .show ()

for i in mini_series[7000]:
size .append(i.size)
age.append(i.age)

plt.figure(dpi = 100)

plt.violinplot (size)

plt.title (’Size.in.silico.minicells.at_.7000.min’ )
plt.ylabel(’diameter._in._nm’)

plt.xticks ([])
plt.savefig(’graphics/Size_in_silico_minicells_at_7000_min.pdf’)
plt .show ()

plt.figure(dpi = 100)

plt.violinplot (age)
plt.xticks ([])
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plt.title (’Death_at_t.in_silico_minicells_at_7000_min’)
plt.savefig(’graphics/Death.at.t.in.silico.minicells.at.7000_min.pdf’)
plt.ylabel (’t.in_model )

plt .show ()
#
# Inf[19]:

# generate a heatmap to observe distribution change over time
def generate_heatmap (mini_series ,y):

picture_size = |[]
picture_age = []
mean_size = []
mean_age = []

T=0

for t in mini_series:
size_t = []
age_t = []

for cell in t:
size_t .append(cell.size)
age_t.append ((cell.age)—T)

mean_size.append (np.mean(size_t ))
mean_age . append (np.mean(age_t ))

# adjust so heat can be seen:

size = np.histogram (size_t , bins = y)

age = np. histogram (age_t, bins = round(len(mini_series)/60))
picture_size .append(size [0])

picture_age .append(age[0])

T=T+1
return picture_size , picture_age, mean_size, mean_age

# In[20]:

# calculate heatmaps
pic_size , pic.age, mean_size, mean_age = generate_heatmap(mini_series ,80)
salmo_size , salmo_age, mean_salmo_size, mean_salmo_age = generate_heatmap(salmonella
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#print (len (salmonella_series))

# In[21]:

def plot(pic_size, pic_age, title):
angle = 90 # in degrees
rotated_pic_size = ndimage.rotate(pic_size , angle, reshape=True)

plt . figure (dpi = 200)

plt .imshow (rotated_pic_size)#, interpolation= ’'nearest’)
plt . xlim (0,len(pic_size))

plt.ylabel (’diameter._in.nm’)

plt.title(title + ’'_Size_over._Time’)

#plt.yticks (ticks = [’2007,°450°,°1000°], labels = [0,400,800])
plt.savefig(’graphics/’ 4+ title + ’_Size_over_Time.pdf’)
plt.show ()

plt . figure (dpi = 200)

plt.xlim (0,len(pic_age))

plt.title(title+ '_Age_over_Time’)

rotated_pic.age = ndimage.rotate (pic_age, angle, reshape=True)

plt .imshow (rotated_pic_age , cmap = ’'Reds’)#, interpolation= 'nearest’)
plt.xlabel (’time_of_simulation’)

plt.ylabel (’expected._lifetime.’)

plt.savefig(’graphics/’ 4+ title +’_Age_over._Time.pdf’)

plt.show ()

# Show heatmaps
plot (pic_size , pic_age, 'Minicells”)

plot (salmo_size [:500] ,salmo_age[:500], ’Salmonella’)

# In[22]:

# plot mean of heatmaps

def plot_mean (mean_size, mean_age, title):
plt.figure(dpi = 150)
plt.plot (mean_size)
plt.title ('mean_size_of_’+ title)
plt.xlabel (’t_in_min’)
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plt.ylabel (’size.in_nm’)
plt.savefig(’graphics/mean.size_.of.’ + title + ’.pdf’)
plt .show ()

plt.figure(dpi = 150)

plt.title ('mean_age_of_.’ + title)

plt.xlabel (’t.in.min’)

plt.ylabel (’timepoint._of_.death_for.’ + title)

plt.plot (mean_age)
plt.savefig(’graphics/timepoint._of_death._for_’+title+’.pdf’)

plt .show ()
plot_mean (mean_size , mean_age, 'Minicells’)
plot_mean (mean_salmo_size [: t_extract], mean_salmo_age, ’Salmonella’)
# In[23]:

# plot lifetime size relationship

L =]
for i in range(200,1000):
1.append(get_tau(i*x10%xx—9)/60)

plt.figure (dpi = 150)

plt.plot (1)

plt.title ("Tau.related .to.size ”)

plt.ylabel (’taucin.h’)

plt.xlabel(’size_in.nm’)
plt.savefig(’graphics/Tau_related _to_size.pdf’)
plt .show ()

# Inf24]:

# sainity check salmonella grwoth
1 =[1000,]

def salmonella_growth(_size):
return _size x gamma * (5000— _size) +_size

for i in range(0,100):

l.append(salmonella_growth (1[—1]))
print (1)

Humboldt-Universitat zu Berlin 18 Minicells



5 REFERENCES

plt.figure (dpi = 150)

plt.plot (1)

plt.xlabel ("time.in._min’)

plt.ylabel(’size_in.nm’)
plt.title(’single.salmonella_growth_for_100_min.pdf’)
plt.savefig(’graphics/example_.Salmonella_grwoth_for_100min ")
plt .show ()

)

(
( )

#Inf ]:

# In[ J:
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