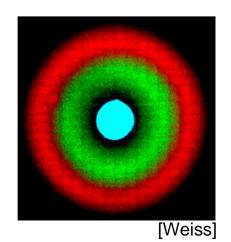
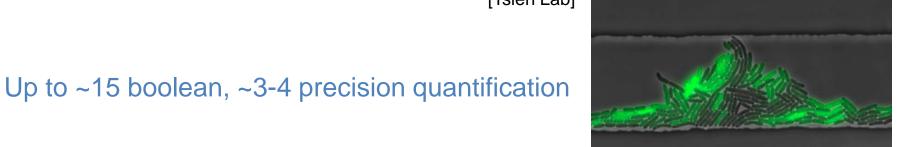


Introduction to Fluorescence & Absorbance


Jacob Beal


iGEM Measurement Summer Webinar: Quantifying fluorescence and cell count with plate readers July 14th, 2020

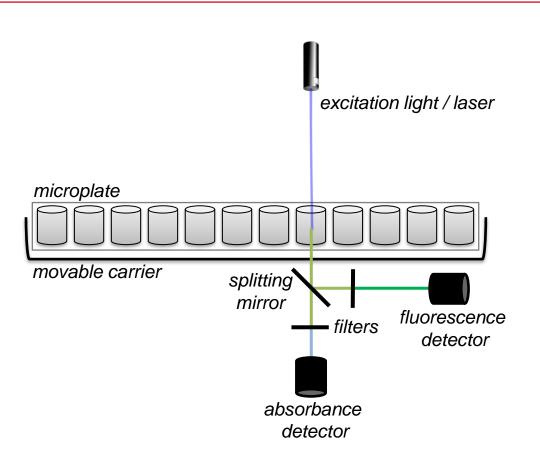
This document does not contain technology or technical data controlled under either U.S. International Traffic in Arms Regulation or U.S. Export Administration Regulations.


Fluorescent Protein = Debugging Output

[Tsien Lab]

[Hasty]

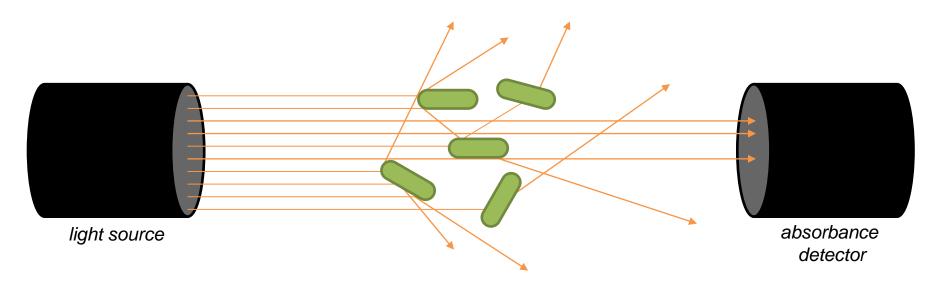
Picking your instrument


Today's focus

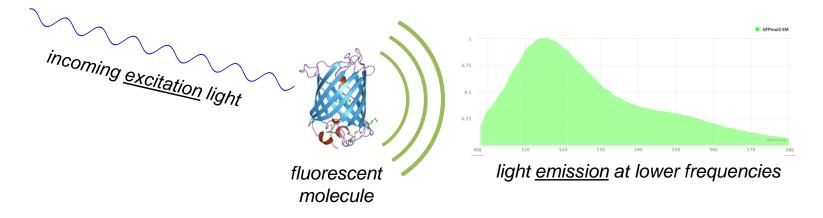
	Fluorimeter	Plate Reader	Flow Cytometer	Fluorescence Microscope
Throughput	Low	High	High	Low - High
Resolution	Population	Population	Single Cell	Subcellular
Time Series	Yes	Yes	No	Yes
Dynamic Range	2-3 logs	2-3 logs	3-6 logs	1-2 logs
# cells	n/a	n/a	High	Low

Of course, your resources and instructors matter most...

How a plate reader works



How Absorbance (OD) Works

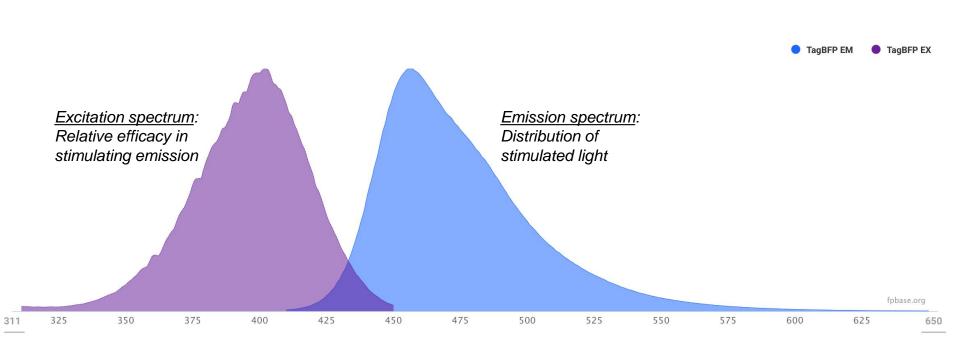


- Cells (and other particles) scatter and absorb light
 - Optical Density (OD) = log_{10} (source / detector)
- Fraction of light detected depends on particle density, particle opacity, path length
 - Scattering also depends on frequency (typically 600nm)
- Absorbance per cell linear at low OD (< ~0.5), highly non-linear at high OD (> ~2.0)

How Fluorescence Works

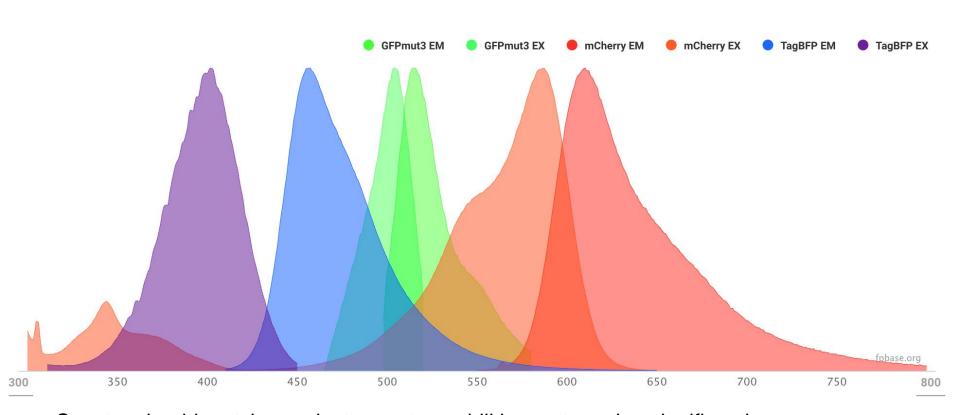
- Great signal, proportional to number of molecules
- Exact unit relation in context is highly sensitive, hard to calculate

Factors affecting fluorescence measures

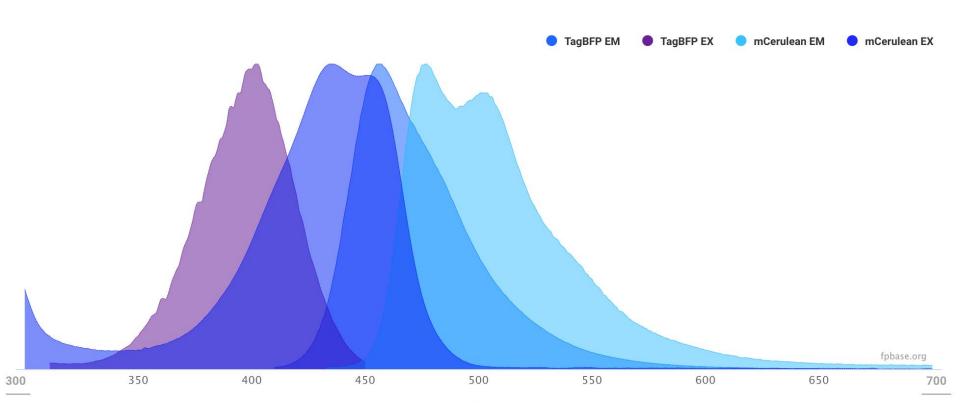


- Molecule:
 - Excitation and emission spectrum
 - Brightness / quantum yield
 - Proper folding
 - Quenching from binding to other molecules
- Sample:
 - pH, oxygenation
 - Background fluorescence: media, cell (can vary with cell state)
 - Other fluorescent molecules (spectral overlap)
 - Sample volume, orientation
- Instrument
 - Excitation strength, frequency
 - Emission filters, light path
 - Overlap of excitation and emission
 - Detector amplification

Fluorescence always needs calibration to independent standards & process controls

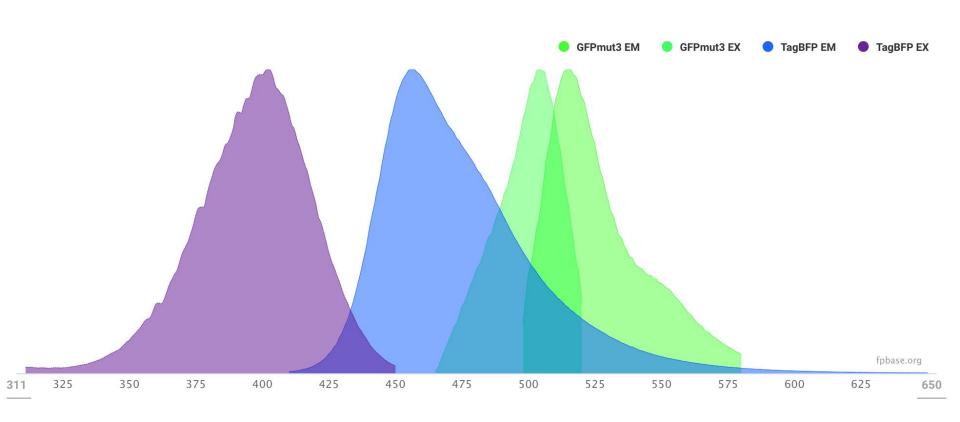

Excitation and Emission Spectra

Excitation and Emission Spectra



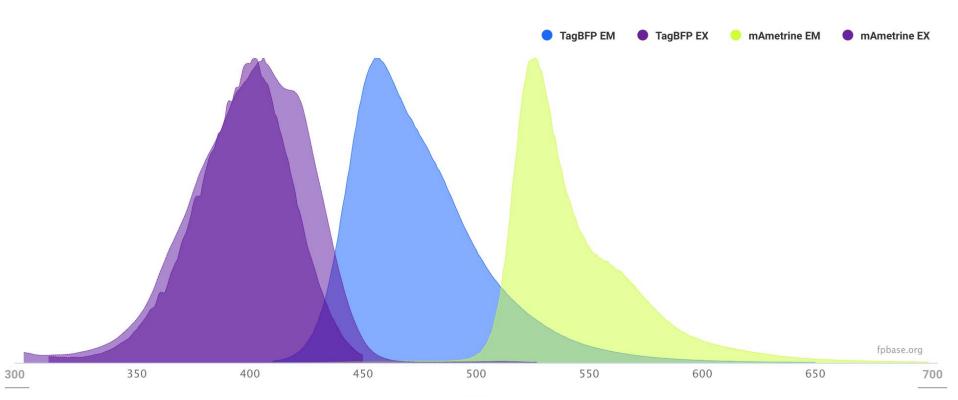
- Spectra should match your instrument capabilities, not overlap significantly
- Minor overlap (recommend <3%) can be disentangled with a linear transform

Poorly Separated Excitation & Emission



TagBFP and mCerulean can be distinguished, but are too close for good quantification

Separated by Excitation



■ TagBFP and GFPmut3 are excited by different wavelengths, thus do not overlap in readings

Separated by Emission

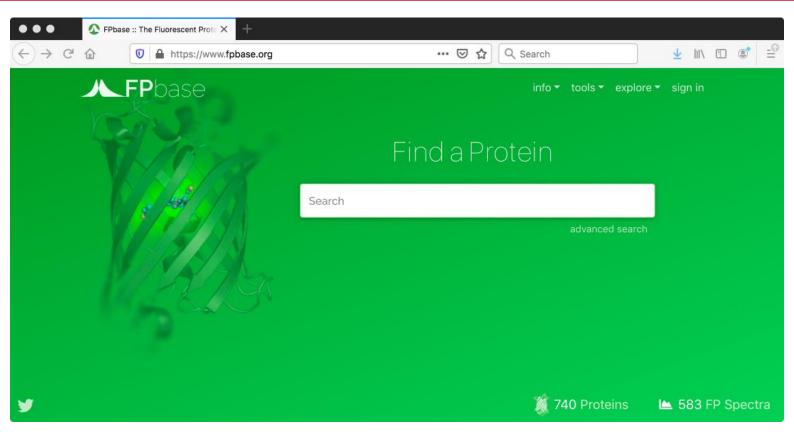
- TagBFP and mAmetrine are excited similarly, but emission is sufficiently separated.
- Useful if your instrument cannot do multiple independent excitations

Recommended Fluorescent Proteins

Green Fluorescent Proteins

- BBa_E0040: GFPmut3 (Excit. 500 / Emiss. 513, brightness 35, maturation time 4.1 min, weak dimer).
- BBa_K864100: sYFP2 (Excit. 515 / Emiss. 527, brightness 68, maturation time 4.1 min).
- Calibrant: fluorescein

Red Fluorescent Proteins


- BBa_J06504: mCherry (Excit. 587 / Emiss. 610, brightness 16, maturation time 15 min, pKa 4.5).
- mKate2 (Excit. 588 / Emiss. 633, brightness 25, maturation time 20 min, pKa 5.4).
- If a slow maturation time is acceptable:
 - BBa E1010: mRFP1 (Excit. 584 / Emiss. 607, brightness 12.5, maturation time 60 min, pKa 4.5).
 - mScarlet (Excit. 569 / Emiss. 594, brightness 70, maturation time 174 min, pKa 5.3).
- Calibrants: Texas Red, Nile Red

Blue Fluorescent Proteins

- BBa K592100: TagBFP (Excit. 402 / Emiss. 457, brightness 33, maturation time 13 min, pKa 2.7).
- If a slow maturation time is acceptable:
 - Cerulean3 (Excit. 433 / Emiss. 475, brightness 35, maturation time 70 min, pKa 3.2).
- Calibrants: Coumarin 30 (not yet verified)

If you need other proteins:

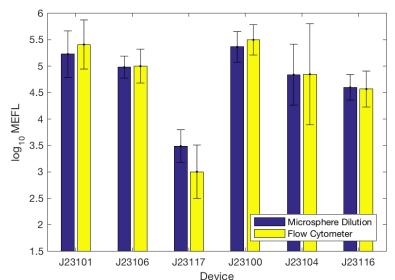
For more proteins & spectra, fpbase.org is an excellent resource!

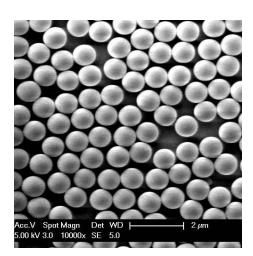
Summary

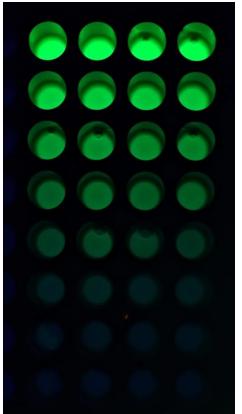
- Fluorescence is a valuable biological debugging tool
- Different instruments are good for different purposes
 - Plate readers are good for tracing time series
 - Flow cytometers are good for quantifying cell behavior
 - Microscopes are good for spatial arrangement and subcellular structure
- Plate readers typically measure both absorbance (OD) and fluorescence
- Fluorescence is affected by many factors, so measurements must be calibrated
- Fluorescent proteins should be chosen to match calibrants and not interfere with each other

Calibration of Plate Reader Fluorescence and OD Measurements

Jacob Beal


iGEM Measurement Summer Webinar: Quantifying fluorescence and cell count with plate readers July 14th, 2020


iGEM Plate Reader Calibration Protocol



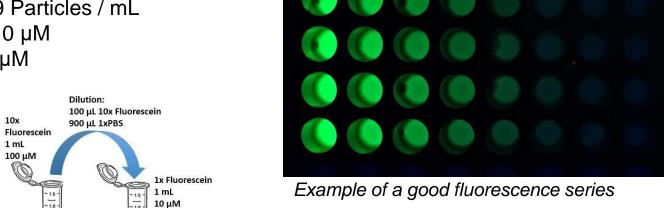
- Calibration with serial dilutions of cheap, stable materials
 - GFP: fluorescein (<u>Sigma 46970</u>), RFP: Texas Red (<u>Sigma S3388</u>)
 - OD: Monodisperse silica beads (<u>Nanocym 950nm</u>)
- Produces MEFL units directly comparable w. flow cytometry, models
- Highly replicable & debuggable measurements (1.8x geo.std.)
- Validated with large-scale interlab study (244 institutions)

[Beal et al., '18, Beal et al., '19]

Calibration Process

- Running the calibration protocol: https://2020.igem.org/Measurement/Protocols
 - Serial dilution of monodisperse silica particles
 - Serial dilution of each fluorescent dye
 - Enter all values in provided Excel sheet to calculate
- Instrument settings must be identical for calibration and experiment!
 - Turn off instrument auto-calibration! (e.g., path length correction, auto-gain)
- Re-run calibration at least monthly (preferably weekly), to ensure nothing changes

Serial Dilutions



Stock concentrations:

OD: 3.00E+09 Particles / mL

- Fluorescein: 10 μM

- Texas Red: 2 μM

100 ul

100 ul

8

100 ul

100 ul

10

11

100%

100 ul

Transfer 200 ul

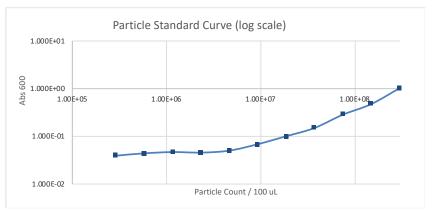
into each well

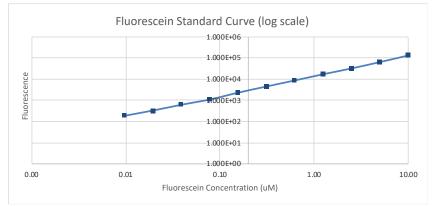
В

C

D

in column 1

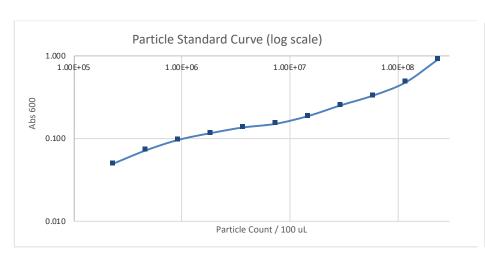

Should be adaptable to other cell types by changing particle diameter, other fluorescence by changing calibrating dye

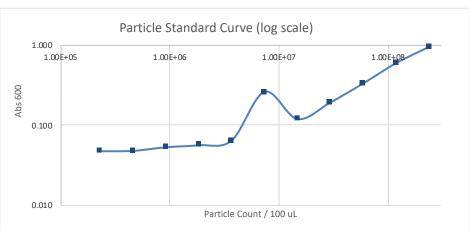


Liquid

Waste

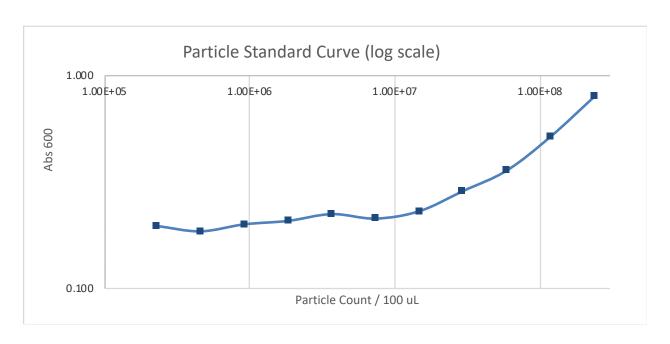
Example of Good Calibration


3.26E+08 particles / Abs600 Valid for Abs600 > 0.043


4.70E+09 MEFL / a.u. Valid for a.u. > 47

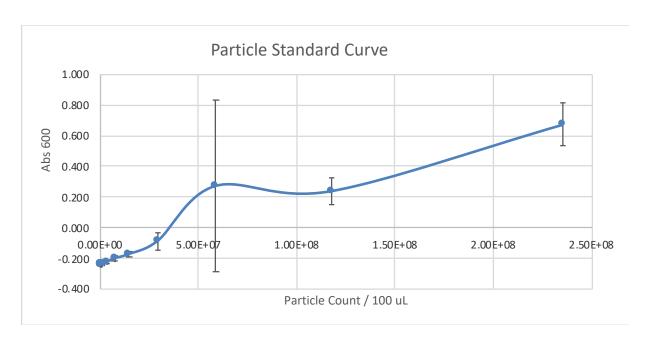
For most instruments, effective dynamic range of fluorescence is larger than for OD

Problem: Inconsistent Dilution



■ If not linear in log scale (except for saturation), check data entry and/or redo pipetting

Problem: Narrow Range

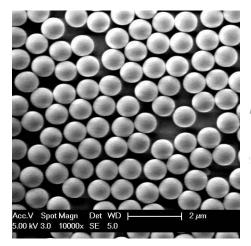


- Only about 4x from highest to lowest range → adjust instrument settings
 - OD range should be at least 20x
 - Fluorescence range should generally be larger, depending on machine

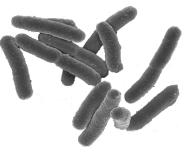
Problem: Negative Values

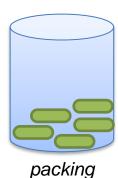
■ Readings should all be positive → instrument needs maintenance / reconfiguration

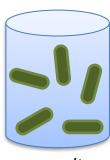
Automated Calibration Validation


https://github.com/iGEM-Measurement-Tools/Excel_Process_Validator

Found Excel file iGEM 2019 Plate Reader Fluorescence Calibration - Example.xlsx All expected sheets are present Template appears to be intact All variables were extracted Sufficient dynamic range of Abs600 calibration values: 31.46 Found a sufficiently long particle dilution slope from column 1 to 7 Computed mean particles / Abs600 is positive All non-blank wells show significant cell counts All validation checks passed for Abs600 Sufficient dynamic range of fluorescein calibration values: 4387.20 Found a sufficiently long fluorescein dilution slope from column 1 to 11 Computed mean MEFL / a.u. is positive All validation checks passed for fluorescence


What do the units mean?


- Equivalent Particles
 - Calibrated units are close to cell counts (but not exact)
 - Measure can be increased by debris, packing, expression of opaque materials



E. coli ≠ silica spheres

ring opacity

"This sample is as opaque as a suspension of this many cell-like spheres"

What do the units mean?

300

325

- Molecules of Equivalent X (e.g., MEFL X = Fluorescein, METR X = Texas Red)
 - Calibrated units are close to molecule counts (but not exact)
 - Measure be decreased by fluorescence inhibitors (e.g., slow folding, lack of oxygen)

Fluorescein (FITC) EM Fluorescein (FITC) EX GFPmut3 EM GFPmut3 EX

Fluorescein ≠ GFP

Summary

- Plate reader calibration is simple, cheap, and reliable
 - Use consistent settings and recalibrate at least monthly
- Calibration can detect problems with instrument or configuration
 - Automated validation software is provided by iGEM
- Calibrated units are close to cell count & molecule count (but not identical)
 - Some types of conditions can cause large value changes

Interpreting & Debugging Plate Reader Data

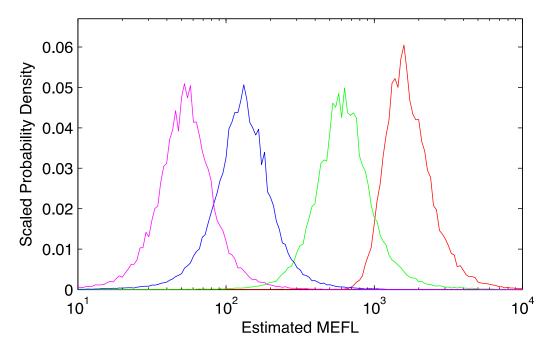
Jacob Beal

iGEM Measurement Summer Webinar: Quantifying fluorescence and cell count with plate readers July 14th, 2020

This document does not contain technology or technical data controlled under either U.S. International Traffic in Arms Regulation or U.S. Export Administration Regulations.

Estimating cell and molecule counts

- Raw readings include background, even after calibration
- To get accurate estimates, subtract background:


$$Cells = (OD - media) * \frac{particles}{OD}$$

$$\frac{MEFL}{Cell} = (a.u. - WT \ a.u.) * \frac{MEFL}{a.u.} * Cells$$

Calibration Excel templates do cell estimate and MEFL conversion, but not WT subtraction

Gene expression → **geometric statistics**

Use geometric statistics in analysis:

Strongest fraction may dominate population

Why geometric stats?

Complex catalytic reactions

→ multiply many rates:

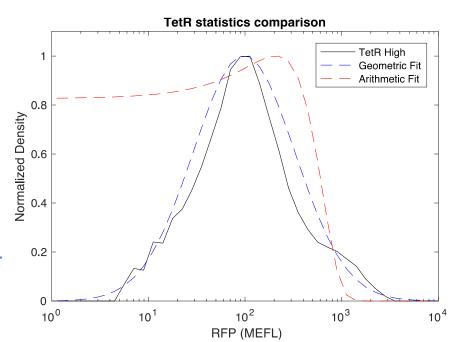
$$R_{\text{express}} = R_1 R_2 R_3 R_4 R_5 \dots$$

Central Limit Theorem

→ converge to log-normal!

Gamma distribution bursting also implies geometric stats

How to Compute Geometric Statistics


Geometric statistics are just normal (arithmetic) statistics on a logarithmic scale:

- Geometric mean = 10^(mean(log10(data)))
- Geometric std.dev. = 10^(std(log10(data)))

Consequences:

- Error bars no longer "plus/minus"
- Instead: k-fold "times/divide"

Example of geometric vs. arithmetic statistics on per-cell fluorescence data:

What about zero?

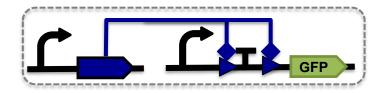
- Net absorbance, fluorescence may be at or below zero
 - Invalid on the log scale!
- Really this is just giving an instrument limit:

```
% Values close to autofluorescence / media indistinguishable from background
% geometric, because cells dominate
autofluorescence_std = geostd(negative_control_replicates);
indistinguishable_MEFL = autofluorescence_mean*(autofluorescence_std^2-1);
% arithmetic, because instrument error dominates
media_std = std(media_replicates);
indistinguishable_cells = 2*media_std;
```

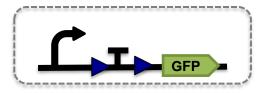
■ Interpret as "< value" rather than zero (e.g., "MEFL/cell < 470", "cells < 1.3e6")

Experimental vs. Process Controls

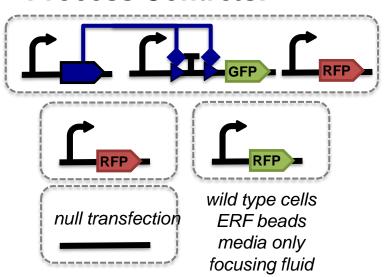
Experimental Controls:


- Is my hypothesis true?
- One control per factor under study
- Best when new data
- Control very close to experiment conditions

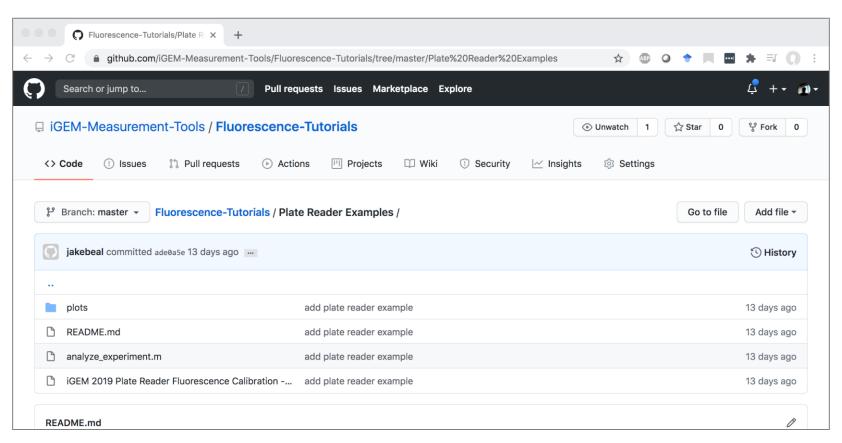
Process Controls:


- Should I trust the data?
- One control per assumption in study
- Best when known value
- Control should have minimal relation to experiment conditions

Experimental vs. Process Controls

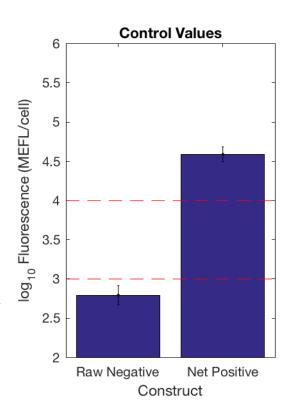


Experimental Controls:

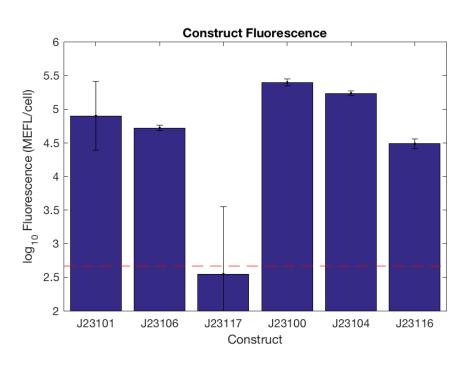


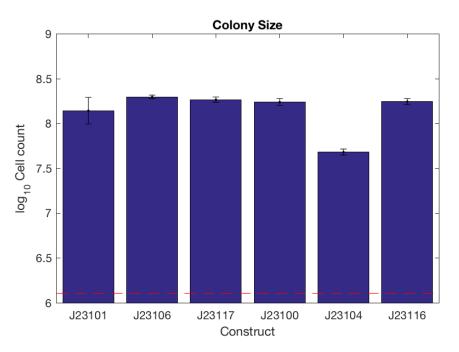
Process Controls:

Example Data to Analyze


https://github.com/iGEM-Measurement-Tools/Fluorescence-Tutorials

Sanity Check Control Values


- Compare to calibrants to ensure instrument linear range
- Compare positive to max number of proteins per cell:
 - E. coli: 2e6
 - Yeast: 6e7
 - Human: 2e9
- Negative control should be much smaller than positive
- Problems with these values indicate likely process failure


Example: E. coli negative <1e3, positive >1e4

Example of Experimental Data

- Colonies have generally grown well
- Constructs are covering full reasonable range of gene expression, except medium-low

Summary

- Calibrated units can be converted to estimates of cell / molecule count
- Gene expression should be analyzed using geometric statistics
- Low values are indistinguishable from background
- Data can be interpreted in relation to realistic biological values
 - Positive and negative controls can detect process failures
 - Experimental values can be related to biological intuitions