Counting cells

To seed cells in an appropriate cell density for further experiments, the available cell number/concentration has to be determined by counting cells.

Material

- Cell suspension (e.g. cell pellet resuspended in 1 mL of growth medium)
- Eppendorf cup (optional)
- PBS (optional)
- Pipette tips ($10 \mu \mathrm{~L}, 100 \mu \mathrm{~L}, 1000 \mu \mathrm{~L})$

Equipment

- Biosafety cabinet (use of laminar flow hood or clean bench is also possible)
- Pipettes
- Brightfield microscope
- Neubauer counting chamber

Procedure

1. Prepare a Neubauer counting chamber: Mount coverslip onto counting chamber. Proper mounting can be confirmed by visibility of Newton's rings.
2. Add approx. $15 \mu \mathrm{~L}$ of cell suspension to counting chamber.

Note: To make sure that cells are distributed homogeneously within the suspension, you should mix it by gently pipetting up and down a few times before taking out cells for counting.
Optional: If you expect to have a highly concentrated cell suspension, it can be diluted for counting. E.g. for a 1:10 dilution, add $90 \mu \mathrm{~L}$ PBS and $10 \mu \mathrm{~L}$ cell suspension to an Eppendorf cup and mix thouroughly. Use this diluted solution for counting.
3. Using a brightfield microscope, count cells within the Neubauer counting chamber. Note: For statistically best results, count all 4 big 4×4 squares and calculate the mean number of cells in one big square.
4. Calculate the cell concentration (cells $/ \mathrm{mL}$) of your original cell suspension:
$\mathrm{c}=$ mean number of cells in one big 4×4 square * 10000 * dilution factor (= 1 in case of no dilution)

Calculation example

You diluted your cell suspension 1:10 and counted 4 big squares.
Your counted cell numbers are 58, 53, 49, 56.
Consequently, the mean cell number per big square is: $(58+53+49+56) / 4=54$.
Therefore: $\mathrm{c}=54 * 10000 * 10$ cells $/ \mathrm{mL}=5400000$ cells $/ \mathrm{mL}=5.4 * 10^{6}$ cells $/ \mathrm{mL}$

Further calculations

When counting cells, you usually need to seed a certain cell number. Once you know the cell suspension's concentration, this can be calculated easily as described in the following.
c: counted concentration of cell suspension
x : desired cell number
V : volume of cell suspension containing the desired cell number
$V=x / c$
Example:
$\mathrm{c}=5.4 * 10^{6}$ cells $/ \mathrm{mL}$

$$
\begin{aligned}
& x=250000 \text { cells }=0.25 * 10^{6} \text { cells } \\
& V=\left(0.25 * 10^{6} \text { cells }\right) /\left(5.4 * 10^{6} \text { cells } / \mathrm{mL}\right)=0.046 \mathrm{~mL}=46 \mu \mathrm{~L}
\end{aligned}
$$

Notes

- Always wear a labcoat and gloves.

