
Guide for Using Rosetta when Designing Ligand Binding Sites

1

Guide for Using Rosetta when Designing Ligand
Binding Sites

C. Coll1, A. Sandelin1, A. Gynter2, M. Rajakenttä1, T. Jämsä2, D. Pająk1, E. Barannik2, G.

Åberg2, N. Lindholm2, J. Manninen1

All authors are part of the Aalto-Helsinki 2020 iGEM team

1University of Helsinki
2Aalto University

ABSTRACT

During the past years, computational methods and tools for biology have been developed at a
speed never seen before. They allow scientists to carry out preliminary studies before working
in the lab, saving both time and costs. One of the most commonly used tools for protein studies
is Rosetta, a software that includes algorithms for computational modelling and analysis of
protein structures. It allows enzyme design, de novo protein design, ligand docking, as well as
structure prediction of biological macromolecules and complexes among others. Here, we
present a guide on how to use Rosetta for the design of ligand binding sites. During our iGEM
project, we have seen that although extremely useful, Rosetta and other software may lack
suitable documentation for unexperienced computational biologists. We hope this guide will
help to change this.

Key words: Rosetta, ligand binding site(s).

INTRODUCTION

We present a step-by-step guide on how to design ligand binding sites with the Rosetta
software. This guide is based on the article Rosetta and the Design of Ligand Binding Sites
published by Moretti and the colleagues (2016). Importantly, this guide is only addressed to
users that want to design ligand binding sites of proteins that bind to one or more ligand
molecules, as long as the molecules bound are the same. We acknowledge that Moretti’s article
is already concrete and useful, but non-computational biologists might have some trouble
following the steps and understanding what is being done. We hope this guide will help to
change this. We are first going to point out the considerations needed to be taken into account
when designing a ligand binding site, the materials and software required, the necessary steps
and, ultimately, how to interpret scores in Rosetta.

CONSIDERATIONS

The first thing that non-computational biologists need to know is that Rosetta is a non-graphical
software exclusively run in a Unix-like environment. Nonetheless, after enough practice, they
can see it is not as difficult to use as it might seem at the beginning.

Guide for Using Rosetta when Designing Ligand Binding Sites

2

Before starting the design of a ligand binding site, there are several important considerations
regarding the protein that need to be taken into account. First of all, the protein and the ligand
structures to be modelled need to be in a database in order for the user to be able to work with
the files (see more in Materials and Software section). It is of great importance that the user
knows the structure of the protein, especially the number of chains (named A, B, C…), how
many ligand molecules does it bind to, and if it binds to more than one ligand, whether the
molecules are the same. This will be of special relevance when preparing the scripts for the
modelling of the binding sites.

MATERIALS AND SOFTWARE

In order to use Rosetta for the design of ligand binding sites, several materials and software are
required.

Materials

1. The structure of the protein to be re-designed, in PDB format. The main database of
tridimensional protein structures is Protein Data Bank (PDB).

2. The structure of the ligands that bind to the protein that wants to be re-designed.
Examples of chemical databases where ligands can be found are PubChem,
ChemSpider or Zinc, among others.

Software

1. A Unix-like operating system such as Linux.
2. Access to a computer cluster. A computer cluster is a set of connected computers with

combined computational power, which allows to cut significantly the calculation time
for heavy tasks. Rosetta’s simulations are computationally heavy and normally the
users’ computers take a lot of time to run the jobs or even do not have enough memory
or CPU’s (central processing units) to run them. Thus, access to a computer cluster is
needed if results are wanted to be obtained in a reasonable time-frame.

3. Rosetta. A license is needed to download Rosetta. There are two types of licenses:
academic or commercial. After requesting it, the software can be downloaded on the
following page: https://www.rosettacommons.org/software/license-and-download.

4. PyMOL. PyMOL is an open-source molecular visualization software used to study the
structure of proteins and molecules. The software is free to download on the following
website: https://pymol.org/2/. Another existing software with the same purpose is
Chimera (https://www.cgl.ucsf.edu/chimera/download.html).

5. OpenBabel. OpenBabel is a software used to study chemical data. In our case, it is used
to introduce some modifications to the ligands of the protein that is going to be re-
designed. The download and installation instractions can be found on
https://openbabel.org/docs/dev/Installation/install.html.

6. MGL tools (AutoDock 1.5.6). AutoDockTools is a graphical front-end for setting up
and running AutoDock - an automated docking software designed to predict how small
molecules, such as substrates or drug candidates, bind to a receptor of known 3D

Guide for Using Rosetta when Designing Ligand Binding Sites

3

structure. The software can be downloaded from here:
http://mgltools.scripps.edu/downloads.

7. For MacOS: XQuartz. XQuartz is needed to run the AutoDockTools. The XQuartz
project is an open-source effort to develop a version of the X.Org X Window System
that runs on MacOS. Together with supporting libraries and applications, it forms the
X11.app that Apple shipped with MacOS versions 10.5 through 10.7. It can be
downloaded from here: https://www.xquartz.org/.

8. AutoDock Vina. AutoDock Vina is an open-source program for doing molecular
docking, which can be downloaded here: http://vina.scripps.edu/download.html.

STEP-BY-STEP GUIDE

In this step-by-step guide we provide the user with the steps and commands they have to run
in order to re-design the ligand binding sites of the protein of interest. Notes for the reader: (i)
the text in italics should be changed according to the user’s preference and (ii) to use the Rosetta
files specified for the commands here provided, the user needs to know the file and the path to
it. Here we provide the paths to the files at the date June 2020. However, depending on the
Rosetta version, these paths may change. If that is the case the user will see an error message
when running the command. In order to find the path to the file the command find -name
name_of_the_Rosetta_file_to_be_used can be used. Then, they will have to change
the path to the file in the commands that we provide.

1. Access to the computer cluster. Depending on the computer cluster used, it might be
necessary to load certain modules before starting the design itself. Importantly, these
modules have to be uploaded every time the user accesses the computer cluster. Also,
the user might need to load different modules depending on the computer cluster being
used. To know which modules are needed the user needs to read the warning and error
messages that will pop-up when running Rosetta. The modules we have used for our
design are:

module load openmpi #Module to load MPI
module load sqlite #Module needed for relaxing the protein
module load gcc #Module needed for running Rosetta

Moreover, it is possible that the user needs to add some libraries to the path where they
are working. Once more, to know the paths needed, the user should read the warning
messages. To add the libraries the command needed is:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:PATH TO THE LIBRARY

2. Preparation of the Protein. Before starting the design, the protein file has to be pre-
processed. This pre-processing consists of two steps:

Guide for Using Rosetta when Designing Ligand Binding Sites

4

2.1. Clean the PDB file. PDB files normally contain water molecules among others,
which need to be removed before starting the design. This is done with the
following command:

rosetta/main/tools/protein_tools/scripts/clean_pdb.py
protein_file_name protein_chains

Note that the user has to specify the chains that the processed protein has (e.g.
A, B, C…), which can be previously visualized in PyMOL. In the case the
protein has two chains (A and B), instead of protein_chains the user should
write AB. The output files should be one pdb file, which is the clean protein
file, and as many fasta files as chains the protein has.

2.2. Relaxing the protein structure. The protein structure has to be “relaxed” so
the designing of the ligand binding sites can be done. When the user relaxes a
protein, basically they sample conformations of a given structure in 3D space to
find the lowest-scoring variant. It is recommended to relax the structure many
times (at least 10). This will give the user different output files with different
scores. The user should work with at least more than 2 of these relaxed files.
Also, the user has to consider this job can take some time to finish. In these
cases, it is worth creating a .sh script (protein_relaxing.sh) to launch it and run
things in the background. This means the user can close the session in the
computer-cluster and close their computer and the job will still run. Note that
depending on the cluster used, the user might have to write a different script. In
our case, the cluster used has the workload manager Slurm, which helps to
manage resources between different users on the same computer. The script
written had the following structure:

#!/bin/bash

#SBATCH --time=05:00:00
#SBATCH --mem=4G
#SBATCH --output=relaxing.%j.out

srun mpiexec
rosetta/main/source/bin/relax.mpi.linuxgccrelease -
database rosetta/main/database -s
path_to_clean_file/clean_file -nstruct
number_of_relaxed_structures

Importantly, the user can specify different flags (options in command-line
programs) to be performed when running the command. Specific flags can be
consulted in the official Rosetta documentation
(https://www.rosettacommons.org/docs/latest/application_documentation/struc

Guide for Using Rosetta when Designing Ligand Binding Sites

5

ture_prediction/relax). To run the above script in the background the following
command should be run:

sbatch protein_relaxing.sh

The output files should include as many pdb files as relaxed structures the user
wants to get and a scoring file with the scores of all the relaxed structures. For
more information on scoring files please refer to the section “Scoring in
Rosetta” (Table 1). After performing the relaxation, the protein residue numbers
might have changed as a result of this step. The user can look at the differences
in residue numbers between the original file and the clean and relaxed file using
PyMOL. This change in residue numbers is really important when the user
wants to re-design specific residues from the protein. In order to do so, they will
have to check what are the numbers of the residues they want to change in the
new clean and relaxed file.

3. Preparation of the Ligand. Preparation of the ligand is also needed before starting the
design. For this preparation, the user will need OpenBabel and Rosetta.

3.1. Convert the ligand to SDF format and add hydrogens if needed. In this step,

the ligand file is converted to an appropriate format to work with Rosetta and
the user can also add hydrogens to the molecule if needed. The hydrogens can
also be added depending on the pH the user is expected to work with. To know
more about the possible flags that can be used with Obabel visit
https://openbabel.org/docs/dev/Command-line_tools/babel.html.

obabel ligand_file.format -flags -O
output_ligand_file_1.sdf

The output file should be one sdf file with the hydrogens added. The user can
use PyMOL or another visualisation software to see the new file.

3.2. Generate a library of ligand conformers. In order to do this, the user needs to
run:

path_to_bcl/bcl molecule:ConformerGenerator -
ensemble_filenames output_ligand_file_1.sdf -
conformers_single_file ouput_ligand_file_2.sdf

The output file should be one sdf file with the different conformations of the
ligand. The user can use PyMOL or another visualisation software to see the
output file.

Guide for Using Rosetta when Designing Ligand Binding Sites

6

3.3. Conversion of the conformer library into a Rosetta-formatted parameters
(params) file. The previous output file cannot be read by Rosetta, that is why
the user needs to transform it so it can be used with the Rosetta software in the
next steps.

rosetta/main/source/scripts/python/public/molfile_to_para
ms.py -n output_ligand_file_3 -p output_ligand_file_3 --
conformers-in-one-file output_ligand_file_2.sdf

The user should get three output files: output_ligand_file_3.params,
output_ligand_file_3.pdb and output_ligand_file_3_conformers.pdb. These
three files are needed during all the design process and are the ones that the user
should be working with from now on.

4. Docking. The next step is to manually dock the ligand into the binding pocket of the
protein. The files used here are the pdb protein file obtained from the preparation of the
protein and the pdb ligand file obtained from the preparation of the ligand. Since the
docking is performed manually, a different software than Rosetta is used. There are
different programs to do this, such as PyMOL or AutoDock. Another software to
consider is SwissDock, which does not require any downloads. From our experience,
we recommend AutoDock Vina, which is the newest version of the AutoDock software.
Note that when docking multiple ligands, separate configuration files and dockings
need to be performed. The docked ligands will not be combined in the same file until
the end.

For the docking, additional preparation of the files is needed. The ligand needs to be
converted to .pdbqt file format. This can be accomplished with OpenBabel in the
terminal with the following command:

obabel /path/output_ligand_file_3.pdb -O /path/ligand.pdbqt

Note that with very large ligands it is harder to achieve good results and these are
computationally heavier.

Preparation of the receptor is done in the graphical user interface of Autodock 4.2.

1. Right-click “All molecules”, choose read molecule, choose your receptor file
e.g. “protein.pdb”, click “Open”.

2. Click “Edit” and “Delete waters” (this is just an extra step, the waters should be
removed already from your relaxed protein file).

3. Click “Edit”, choose “Hydrogens” and “Add”.
4. Click “Edit”, choose “Hydrogens” and “Merge non-polar”.
5. Click “Edit”, choose “Charges” and “Compute Gasteiger charges”.

Next, the grid box needs to be set up. The grid box defines in which space the dockings
for the ligand will be searched for. If the exact binding site of the ligand is known, try

Guide for Using Rosetta when Designing Ligand Binding Sites

7

to fit the grid box around that space. The general rule is to have it as small as possible,
but not too small. If the binding site of the ligand is not known, blind docking is
performed by setting the grid box around the whole protein. However, this is much
more difficult and will not give as good results. Additionally, the larger the grid box is,
the longer the computations will take. Autodock 4.2 GUI is used to set the grid box and
get the coordinates to use while preparing the Autodock Vina configuration file. To
open and set the gridbox click “Grid” and then choose “Grid box”. The size and
orientation of the grid box can be adjusted so that it covers the binding site or ligand.
Make sure to set the spacing to 1 Angstrom before you start adjusting the grid box.

Before running AutoDock Vina the configuration file in .txt format needs to be prepared
(conf.txt). The easiest way is to define the receptor, ligand, output file, coordinates, and
all other parameters in this file. The file could look like this:

receptor = protein.pdbqt
ligand = ligand.pdbqt

out = out.pdbqt

center_x = 24.332
center_y = 1.255
center_z = 24.103

size_x = 16
size_y = 18
size_z = 18

exhaustiveness = 10
energy_range = 25
num_modes = 25
weight_hydrogen = -2.4

There are a number of parameters that can be defined depending on how many outputs
and scores the user wishes to get. More information about the different parameters can
be found in the AutoDock Vina documentation (http://vina.scripps.edu/manual.html).

To run AutoDock Vina in the terminal you need the following command (note that all
the needed files need to be in the same folder):

/path/vina --config conf.txt --log log.txt

When ready, results will be in the predefined output file (in this example out.pdbqt). To
visualize results in PyMOL, the molecules need to be converted to .pdb format. This
can be done in Open Babel as mentioned above. When looking at docking results the
most vital thing to consider is the visual positioning of the ligand. If you know the

Guide for Using Rosetta when Designing Ligand Binding Sites

8

binding site of the ligand, you can compare and make sure that the docked ligand is as
well aligned as possible (Fig. 1). In the log.txt the scores of the run are also available.
The binding affinity is displayed for all the conformations and if the binding affinities
are too high (> -6 kcal/mol), you might want to consider adjusting the docking
parameters. However, always mainly choose the ligand based on how well it is aligned
in the known binding site. Multiple runs might be required and it is natural to get
different results even when not adjusting the parameters. After choosing the best
conformation save it in a separate .pdb file. Then perform all the multiple steps above
for all the ligands (separate preparation of the same receptor is not needed). When all
ligands are docked, the ligands can be combined into one .pdb file by clicking “Action”
and “Copy to Object” in PyMOL.

Figure 1. Erythromycin docked to MphR(A) protein with AutoDock Vina (pink)
compared to the crystallized structure of erythromycin bound to MphR(A) protein
retrieved from PDB (green).

5. PyMOL and revising the Docked Files. After the docking step, the user can revise the
docked files to make sure the docking has been correctly performed. This step is
especially important if the protein binds to more than one ligand molecule, since the
ligand file will need some modifications. When doing the docking, the ligands are
automatically assigned to a chain name (e.g. X, A, B…). If there is only one ligand, the
name of the chain it is placed on is X. If there are two, the first ligand is placed in chain
X and the second one in chain A and so on. The chain names can be visualized in
PyMOL when looking at the sequence: /name of the file/segi(segment-identifier-
list)/chain/residue. If the user is only placing one ligand, they do not have to do any
modifications to the ligand docked file. On the other hand, when there is more than one
ligand molecule, the user has to change the names of the different segi(s) and chains so
all the ligands are placed under the same segi and chain names. This chain name will
be ideally X, since it is, by default, the first chain name that is always assigned. In order

Guide for Using Rosetta when Designing Ligand Binding Sites

9

to do this, the user has to open the docked ligand file in PyMOL and do the following
steps:

5.1. Select one of the ligands by clicking on its name in the sequence viewer.

5.2. Change the residue number of the ligand selected with the following command:

alter (sele), resi=2

5.3. Change the residue chain of the ligand selected running the following command:
alter (chain chain_to_change), chain=‘X’

5.4. Remove the segi of the ligand selected with the following command: alter
(segi segi_to_change), segi=‘’

5.5. Save the file as a .pdb file: save file_name.pdb

In this way, the output file should now be a pdb file with the two or more ligands placed
under the same segi and chain names and each one of them having a different residue
number.

6. Design. This is the main step where the ligand binding sites are re-designed. For this to

be done, there are several steps needed.

6.1. Prepare a residue specification file (mutations.resfile). In this file, the user

specifies which residues should be re-designed. The user can allow all residues
to mutate or only some of them. It is important to remember that the residues
have been renumbered when processing the protein file. The structure of a
resfile is the following:

Command applied to all residues not specified in the body
AUTO #Use the default behaviour
start #After this command the body starts
Residue_Number Chain_in_Protein Command applied

Next, you can see an example of a resfile in which only the natural amino acid
is allowed for all the residues not specified in the body (NATAA command) and
where the amino acids 52, 59, 85, 86, 93, 116, 137, 144, 145, 234, 241, 267,
268, 275, 298, 319, 326, 327 are allowed to change to all the amino acids except
cysteine (ALLAxc). Amino acids 52-145 are in chain A of the protein and
amino acids 234-327 in chain B. The alterations to cysteine are not allowed,
because cysteine tends to form stable sulphur bonds. Allowing for changes to
this amino acid would lead to almost all residues being changed to cysteine,
even if it would not be the most optimal mutation. To know more about the
possible options when designing a resfile, the user can visit the following

Guide for Using Rosetta when Designing Ligand Binding Sites

10

website:
https://www.rosettacommons.org/manuals/archive/rosetta3.5_user_guide/d1/d
97/resfiles.html.

NATAA
AUTO
start
52 A ALLAxc
59 A ALLAxc
85 A ALLAxc
86 A ALLAxc
93 A ALLAxc
116 A ALLAxc
137 A ALLAxc
144 A ALLAxc
145 A ALLAxc
234 B ALLAxc
241 B ALLAxc
267 B ALLAxc
268 B ALLAxc
275 B ALLAxc
298 B ALLAxc
319 B ALLAxc
326 B ALLAxc
327 B ALLAxc

6.2. Prepare a docking and design script (design.xml). This script will optimize
the location of the ligand in the binding pocket, re-design the surrounding
sidechains and refine the interactions in the designed context among others. The
following script is based on the script provided by Moretti and colleagues
(2016). The modifications added are needed for the script to be run in the last
release of Rosetta at date June 2020. Between <!-- --> the user can find
explanations of some of the commands. Notes for the user: (i) the resfile has to
be specified in the body of the script where indicated; (ii) it is important the user
knows which scoring function is being used when performing the design, since
each Rosetta score function scores the structures (for more information on
scoring functions visit https://www.rosettacommons.org/). The scoring
functions used here can be found in the command ScoreFunction of the next
script:

<ROSETTASCRIPTS>
 <SCOREFXNS>
 <ScoreFunction name="ligand_soft_rep"
weights="ligand_soft_rep"/>
 <ScoreFunction name="hard_rep"
weights="ligandprime"/>

Guide for Using Rosetta when Designing Ligand Binding Sites

11

 </SCOREFXNS>
 <TASKOPERATIONS>
 <DetectProteinLigandInterface name="design_interface"
cut1="6.0" cut2="8.0" cut3="10.0" cut4="12.0" design="1"
resfile="mutations.resfile"/>
 </TASKOPERATIONS>
 <LIGAND_AREAS> <!--Describes parameters specific to
each ligand-->
 <!--cutoff: the distance in angstroms from the ligand
an amino-acid’s C-beta atom can be and that residue still
be part of the interface-->
 <!--add_nbr_radius: increases the cutoff by the size
of the ligand neighbor atom’s radius specified in the
ligand .params file-->
 <!--Calpha_restraints: Calpha_restraints greater than
0, backbone flexibility is enabled-->
 <LigandArea name="docking_sidechain" chain="X"
cutoff="6.0" add_nbr_radius="true" all_atom_mode="true"
minimize_ligand="10"/>
 <LigandArea name="final_sidechain" chain="X"
cutoff="6.0" add_nbr_radius="true" all_atom_mode="true"/>
 <LigandArea name="final_backbone" chain="X"
cutoff="7.0" add_nbr_radius="false" all_atom_mode="true"
Calpha_restraints="0.3"/>
 </LIGAND_AREAS>
 <INTERFACE_BUILDERS> <!--Describes how to choose
residues that will be part of the protein-ligand
interface. These residues are chosen for repacking,
rotamer trials, and backbone minimization during ligand
docking-->
 <!--ligand_areas: list of strings matching Ligand
Area names-->
 <!--extension_window: surrounds interface residues
with residues labeled as ‘near interface’. This is
important for backbone minimization, because a residue’s
backbone cannot really move unless it is part of a
stretch of residues that are flexible-->
 <InterfaceBuilder name="side_chain_for_docking"
ligand_areas="docking_sidechain"/>
 <InterfaceBuilder name="side_chain_for_final"
ligand_areas="final_sidechain"/>
 <InterfaceBuilder name="backbone"
ligand_areas="final_backbone" extension_window="3"/>
 </INTERFACE_BUILDERS>
 <MOVEMAP_BUILDERS> <!--Constructs a movemap: A movemap
is a 2xN table of true/false values, where N is the
number of residues of your protein/ligand complex. The
two columns are for backbone and side-chain movements-->

Guide for Using Rosetta when Designing Ligand Binding Sites

12

 <MoveMapBuilder name="docking"
sc_interface="side_chain_for_docking"
minimize_water="true"/>
 <MoveMapBuilder name="final"
sc_interface="side_chain_for_final"
bb_interface="backbone" minimize_water="true"/>
 </MOVEMAP_BUILDERS>
 <SCORINGGRIDS ligand_chain="X" width="25">
 <ClassicGrid grid_name="vdw" weight="1.0"/>
 </SCORINGGRIDS>
 <MOVERS>
 <FavorNativeResidue name="favor_native"
bonus="1.00"/>
 <Transform name="transform" chain="X" box_size="5.0"
move_distance="0.1" angle="5" cycles="500" repeats="1"
temperature="5" rmsd="4.0"/>
 <HighResDocker name="high_res_docker" cycles="6"
repack_every_Nth="3" scorefxn="ligand_soft_rep"
movemap_builder="docking"/>
 <PackRotamersMover name="design_interface"
scorefxn="hard_rep" task_operations="design_interface"/>
 <FinalMinimizer name="final" scorefxn="hard_rep"
movemap_builder="final"/>
 <InterfaceScoreCalculator name="add_scores"
chains="X" scorefxn="hard_rep"/>
 <ParsedProtocol name="low_res_dock">
 <Add mover_name="transform"/>
 </ParsedProtocol>
 <ParsedProtocol name="high_res_dock">
 <Add mover_name="high_res_docker"/>
 <Add mover_name="final"/>
 </ParsedProtocol>
 </MOVERS>
 <PROTOCOLS>
 <Add mover_name="favor_native"/>
 <Add mover_name="low_res_dock"/>
 <Add mover_name="design_interface"/>
 <Add mover_name="high_res_dock"/>
 <Add mover_name="add_scores"/>
 </PROTOCOLS>
</ROSETTASCRIPTS>

6.3. Run the design application. In this step, the user runs the design of the binding

site itself. It is recommended to do from 1000 to 5000 designs of the protein,
which means the user will obtain from 1000 to 5000 pdb files with modifications
with respect to the original clean and relaxed pdb file. This is computationally
heavy and can take several hours even when using a computer cluster. For this
reason, we recommend starting with making a script (launch_design.sh) that

Guide for Using Rosetta when Designing Ligand Binding Sites

13

will be run in the background. Note that depending on the cluster used, the user
might have to write a different script. In our case, the cluster used has Slurm,
and the script written had the following format:

#!/bin/bash

#SBATCH --time=20:00:00
#SBATCH --array=0-49
#SBATCH --mem=3100M
#SBATCH -n 1
#SBATCH --nodes=1
#SBATCH --
output=path_where_the_output_is_wanted/output_job_name.ou
t

NUM=20

srun mpirun rosetta_scripts.mpi.linuxgccrelease -ex1 -ex2
-linmem_ig 10 -restore_pre_talaris_2013_behavior -
parser:protocol design.xml -extra_res_fa
output_ligand_file_3.params -s
“clean_and_relaxed_protein.pdb docked_ligand.pdb” -
nstruct $NUM --out:prefix $SLURM_ARRAY_TASK_ID -
out:file:scorefile
/path_where_the_output_is_wanted/output_design_file.out

In the above script, the job has 20 hours to run, and it is assigned to 50 arrays
(0-49), each one of which will perform 20 designs. Therefore, the user obtains
1000 pdb files (20x50=1000). To run the script the user has to type the following
command:

sbatch launch_design.sh

After the run, the user should get 1000 pdb files and one score file with the
scores of all the pdbs. To see more about scoring go to the next section, “Scoring
in Rosetta” (Table 2).

7. Filtering. After running the design, the user needs to filter the 1000 pdb files and
choose the ones with the score that is more convenient for them. There are two main
filtering steps.

7.1. Prepare a metrics file (metric_thresholds_1.txt). This file specifies the

thresholds to use when filtering the output of the design run. It will filter the
1000-5000 pdb previous files. It is important to take into account that this
filtering can be done for different parameters. Here we present the parameters
we have used in our protein design. To see other parameters that can be used for

Guide for Using Rosetta when Designing Ligand Binding Sites

14

filtering, refer to Table 2. From our experience, we recommend to use the
average values as the cutoff. In order to obtain these values, the user needs to
run the command in step 7.2.

req total_score value < -1606.71
req if_X_fa_atr value < -50.60
req fa_rep value < 197.15
req if_X_fa_rep value < 14.29
req ligand_is_touching_X value > 0.8
output sortmin interface_delta_X

7.2. Filter on design metrics. Next, the user uses the previous file to filter the pdb
files with the following command:

perl
$WRKDIR/rosetta/main/source/src/apps/public/enzdes/Design
Select.pl -d <(grep SCORE output_design_file.out) -c
metric_thresholds_1.txt -tag_column last >
filtered_designs.sc

When the user runs this command, in the terminal there will appear the average
values for the score metrics. Once the user has these ones, they can be specified
in the metric_thresholds_1.txt file and run this same command again. The user
will get a filtered_designs.sc file, which has a list of the scores and the name of
the files that have passed the filtering. Next, the user needs to create a file
consisting of a list with only the names of the files that have passed the filtering
plus the .pdb extension. This is done with the following command:

awk ‘{print $NF “.pdb”}’ filtered_designs.sc >
filtered_pdbs.txt

7.3. Calculate additional metrics. Once the first filtering step has been done, the

user needs to calculate additional metrics that are focused on the protein-ligand
interface. These metrics are needed to do the second filtering step and
calculating them also requires a lot of computational power. Therefore, we
recommend making another script (launch_interfaces.sh) to be able to run this
step on the background of the computer cluster. Note again, that depending on
the cluster used, the user might have to write a different script. In our case, the
cluster used has Slurm, and the script is the following:

#!/bin/bash

#SBATCH --time=08:00:00
#SBATCH --mem=4000M

Guide for Using Rosetta when Designing Ligand Binding Sites

15

#SBATCH --
output=path_where_the_output_is_wanted/output_job_name.ou
t

srun mpirun InterfaceAnalyzer.mpi.linuxgccrelease -
interface AB_X -compute_packstat -pack_separated -
score:weights ligandprime -no_nstruct_label -
out:file:score_only interfaces.sc -l filtered_pdbs.txt -
extra_res_fa output_ligand_file_3.params

Importantly, in the previous command the user needs to specify the interface
where the additional metrics will be calculated with the flag -interface. The user
has to specify the interface of both the protein and the ligand. To do it, they have
to write the chain names of the protein (in this case, A and B) followed by an
underscore and the chain name of the ligand, which is, by default, X. Once the
script is done, the user can launch it with the command:

sbatch launch_interfaces.sh

The user should obtain one output file, interfaces.sc, with additional metrics of
the files that passed the first filter. To know more about these additional metrics,
please refer to the section “Scoring in Rosetta” (Table 3).

7.4. Prepare a metrics file (metric_thresholds_2.txt). This file specifies the
thresholds to use when filtering the output of the interfaces run. It will filter the
already filtered pdb files. It is important to take into account that this filtering
step, like the last one, can be done for different parameters. Here we present the
parameters we have used in our protein design. To see other parameters that can
be used for filtering, please refer to Table 3. From our experience, we
recommend to use the average values as the cut-off. In order to obtain these
values, the user needs to run the command in step 7.5.

req packstat value > 0.58
req sc_value value > 0.48
req delta_unsatHbonds value < 17.88
req dG_separated/dSASAx100 value < -1.53
output sortmin dG_separated

7.5. Filter on interface metrics. Next, the user does the second filtering step using
the file created in 7.4.

perl
$WRKDIR/rosetta/main/source/src/apps/public/enzdes/Design
Select.pl -d <(grep SCORE interfaces.sc) -c
metric_thresholds_2.txt -tag_column last >
filtered_interfaces.sc

Guide for Using Rosetta when Designing Ligand Binding Sites

16

When the user runs this command, in the terminal there will appear the average
values for the score metrics. Once the user has these ones, they can specify them
in the metric_thresholds_2.txt file and run this same command again. The output
file should be the filtered_interfaces.sc file, with a list of the scores and the
names of the files that have passed the filtering. If the user wants to have a file
with only the names of the files that have passed the filtering, they can run the
following command:

awk ‘{print $NF “.pdb”}’ filtered_interfaces.sc >
filtered_pdbs_final.txt

8. Check the filtered results. Once the user has filtered the results two times, they will
obtain a reduced list of filtered pdbs. It is recommended that the user chooses at least
the three best files according to their purposes and analysing the scores obtained. After
that, the user can manually inspect the pdb files and compare them with the clean and
relaxed protein file with PyMOL to check (i) if there are any modifications in the
desired residues and (ii) if the structure of the protein is correct.

9. Re-Run. Apart from doing the design of the binding sites with the three best protein
files obtained after the preparation of the protein, it is recommended to re-apply the
design protocol for at least the three final best pdb files obtained. So, after choosing
these files, this protocol needs to be re-applied from point 6 onwards. In this case, when
running the script launch_design.sh, the names after the flag -s should be changed to
the name of the selected file. It is recommended to do this re-run from 3 to 5 times. Fig.
2 shows a scheme of the steps that should be followed.

10. Extract the selected protein sequences into fasta format. Once the design has been
run 3-5 times, the user might one to obtain the mutated protein sequence in fasta format.
This can be done by opening the file in PyMOL and running the following command:

save file_name.fasta

Guide for Using Rosetta when Designing Ligand Binding Sites

17

Figure 2. Steps required when following the Rosetta Guide here presented.

SCORING IN ROSETTA

When performing the design of ligand binding sites the user gets scoring files for some metrics
of the design. These scores are in Rosetta Energy Units (REU), which cannot be converted into
physical energy units like kcal/mol, but give the user a relative idea of which files are better
than others. In the next tables (Table 1, Table 2 and Table 3) there is an explanation for the
scoring metrics the user will encounter when following this manual. These explanations have
been gathered from the RosettaCommons webpage (https://www.rosettacommons.org/) and
from a manual the iGEM Technion 2016
(http://2016.igem.org/Team:Technion_Israel/Modifications/Rosetta) and iGEM TU
Eindhoven 2016 (http://2016.igem.org/Team:TU-Eindhoven/Modeling/Rosetta) wrote during
the iGEM competition 2016. If there are not recommended values, from our experience we
recommend to take the average values as a cut-off for filtering as explained in section 7. Note
that the terms without if_X_ refer to the protein as a whole and the ones with if_X_ refer to the
interface of the protein with the sidechain X (by default, the ligands).

Guide for Using Rosetta when Designing Ligand Binding Sites

18

Table 1. Scores obtained when performing protein relaxation.

Scoring Metric Explanation Recommended Value

total_score Measure of protein stability

The lower the better. Good
values are -1/-2/-3 multiplied
by the number of residues of
the protein evaluated

dslf_fa13 Disulfide geometry potential ---

fa_atr
Lennard-Jones attractive
between atoms in different
residues

fa_dun
Internal energy of sidechain
rotamers as derived from
Dunbrack’s statistics

fa_elec
Coulombic electrostatic
potential with a distance-
dependent dielectric

fa_intra_rep
Lennard-Jones repulsive
between atoms in the same
residue

fa_intra_sol_xover4 Intra-residue Lazaridis-
Karplus solvation energy ---

fa_rep
Lennard-Jones repulsive
between atoms in different
residues

fa_sol Lazaridis-Karplus solvation
energy ---

hbond_bb_sc Sidechain-backbone
hydrogen bond energy ---

hbond_lr_bb Backbone-backbone hbonds
distant in primary sequence ---

hbond_sc Sidechain-sidechain
hydrogen bond energy ---

hbond_sr_bb Backbone-backbone hbonds
close in primary sequence ---

lk_ball_wtd Asymmetric solvation energy ---

omega Omega dihedral in the
backbone. A Harmonic ---

Guide for Using Rosetta when Designing Ligand Binding Sites

19

constraint on planarity with
standard deviation of ~6 deg

p_aa_pp
Probability of amino acid,
given torsion values for phi
and psi

pro_close
Proline ring closure energy
and energy of psi angle of
preceding residue

rama_prepro Ramachandran preferences ---

ref

Reference energy for each
aminoacid. Balances internal
energy of amino acid tems.
Plays role in design

yhh_planarity

A special torsional potential
to keep the tyrosine hydroxyl
in the plane of the aromatic
ring

description Name of the file that is being
assessed ---

Table 2. Scores obtained when performing the design of the ligand binding site(s).

Scoring Metric Explanation Recommended Value

total_score Measure of protein stability

The lower the better. Good
values are -1/-2/-3 multiplied
by the number of residues of
the protein evaluated

Grid_score Score of the grid ---

Transform_accept_ratio How well the low resolution
Monte Carlo stage worked.

0-1. 0,3 is ideal but anything
that is not 0 or 1 is good.

(if_X_)angle_constraint

Angle between Atom2 ®
Atom1 vector and Atom2 ®
Atom3 vector …; the angle is
measured in radians

(if_X_)atom_pair_constraint

Harmonic constraints
between atoms involved in
Watson-Crick base pairs
specified by the user in the
params file

Guide for Using Rosetta when Designing Ligand Binding Sites

20

(if_X_)chainbreak A quadratic penalty on
distance of the chain-ends ---

(if_X_)coordinate_constraint How well the design fits the
coordinate constraints ---

(if_X_)dihedral_constraint

Constraints that the dihedral
angles defined be Atom1 ®
Atom2 ® Atom3… be
identical

(if_X_)dslf_ca_dih CA dihedral score in current
disulfide ---

(if_X_)dslf_cs_ang CS angles score in current
disulfide ---

(if_X_)dslf_ss_dih Dihedral score in current
disulfide ---

(if_X_)dslf_ss_dst Distance score in current
disulfide ---

(if_X_)fa_atr
Lennard-Jones attractive
between atoms in different
residues

(if_X_)fa_dun
Internal energy of sidechain
rotamers as derived from
Dunbrack’s statistics

(if_X_)fa_elec
Coulombic electrostatic
potential with a distance-
dependent dielectric

(if_X_)fa_pair Statistical residue-residue
interaction potential Negative results

(if_X_)fa_rep
Lennard-Jones repulsive
between atoms in different
residues

(if_X_)fa_sol
Lazaridis-Karplus solvation
energy ---

(if_X_)hbond_bb_sc
Sidechain-backbone
hydrogen bond energy ---

(if_X_)hbond_lr_bb
Backbone-backbone hbonds
distant in primary sequence ---

Guide for Using Rosetta when Designing Ligand Binding Sites

21

(if_X_)hbond_sc
Sidechain-sidechain
hydrogen bond energy ---

(if_X_)hbond_sr_bb
Backbone-backbone hbonds
close in primary sequence ---

interface_delta_X
The energy of interaction
between the ligand (chain X)
and the protein

ligand_is_touching_X How close is the ligand to the
protein

0-1. 0 If the ligand is far from
the protein and 1, otherwise.
1 in most cases

(if_X_)omega

Omega dihedral in the
backbone. A Harmonic
constraint on planarity with
standard deviation of ~6 deg

(if_X_)p_aa_pp
Probability of amino acid,
given torsion values for phi
and psi

(if_X_)pro_close
Proline ring closure energy
and energy of psi angle of
preceding residue

(if_X_)ref

Reference energy for each
aminoacid. Balances internal
energy of amino acid tems.
Plays role in design

(if_X_)res_type_constraint How close are the results to
the native sequence ---

total_score_X Total ligand grid score ---

vdw_grid_X --- ---

description Name of the file that is being
assessed ---

Table 3. Scores obtained when calculating additional metrics on the protein-ligand interface.

Scoring Metric Explanation Recommended Value

total_score Measure of protein stability ---

complex_normalized Average energy of a residue ---

Guide for Using Rosetta when Designing Ligand Binding Sites

22

in the entire complex

dG_cross
Binding energy calculated in
an “inaccurate” environment
insensitive way

dG_cross/dSASAx100

Binding energy calculated in
an “inaccurate” environment
insensitive way divided by
SASA (Solvent Accessible
Surface Area) multiplied by
100. dSASA controls for
large interfaces having more
energy.

dG_separated

Binding energy calculated in
an “accurate” way by
separating the chains and
optionally repacking

dG_separated/dSASAx100

Binding energy calculated in
an “accurate” way by
separating the chains and
optionally repacking divided
by SASA (Solvent
Accessible Surface Area)
multiplied by 100. dSASA
controls for large interfaces
having more energy.

dSASA_hphobic Hydrophobic SASA (Solvent
Accessible Surface Area) ---

dSASA_int

The SASA (Solvent
Accessible Surface Area)
buried at the interface, in
square Angstroms

dSASA_polar Polar SASA (Solvent
Accessible Surface Area) ---

delta_unsatHbonds

How many unsatisfied bonds
are introduced during the
metrics calculation. These
bonds are hydrogen bonds
that atoms would be able to
make but do not do because
they are blocked by other
residues

hbond_E_fraction Amount of interface energy ---

Guide for Using Rosetta when Designing Ligand Binding Sites

23

(dG_separated) accounted
for by cross interface H-
bonds

hbonds_int Total cross-interface
hydrogen bonds found ---

nres_all Total number of residues in
the complex

Number of residues in the
PDB file

nres_int Total number of residues in
the interface

Number of residues in the
interface

packstat Packing statistic score for the
interface 0-1, the higher the better

per_residue_energy_int Average energy of each
residue at the interface ---

sc_value Shape complementarity 0-1. The higher, the better.

side1_normalized Average per-residue energy
on one side of the interface ---

side1_score Energy of one side of the
interface ---

side2_normalized
Average per-residue energy
on the other side of the
interface

side2_score Energy of the other side of
the interface ---

description Name of the file that is being
assessed ---

CONCLUSIONS

Designing ligand binding sites is a complex process that needs several steps. All the previous
existing guides for designing ligand binding sites are complete, but we have found they require
some basic computational knowledge the user might lack. With this guide, we hope to help
users less experienced in the computational field to be able to design ligand binding sites. If
this is the first time the user uses the Rosetta software, it might be that they encounter some
difficulties during the installation and during the whole designing process. We recommend
starting a similar project in advance.

Guide for Using Rosetta when Designing Ligand Binding Sites

24

REFERENCES

- "Autodock Vina - Molecular Docking And Virtual Screening Program". 2020.

Vina.Scripps.Edu. http://vina.scripps.edu/.

- "Computational Design Of Ligand Binding Proteins". 2016. Methods In Molecular

Biology. doi:10.1007/978-1-4939-3569-7.

- "Mgltools Website - Mgltools". 2020. Mgltools.Scripps.Edu.

http://mgltools.scripps.edu/.

- "Open Babel". 2020. Openbabel.Org. https://openbabel.org/.

- "Pymol | Pymol.Org". 2020. Pymol.Org. https://pymol.org/2/.

- "UCSF Chimera Home Page". 2020. Cgl.Ucsf.Edu. https://www.cgl.ucsf.edu/chimera/.

- "Xquartz". 2020. Xquartz.Org. https://www.xquartz.org/.

- "Team:Technion Israel/Modifications/Rosetta - 2016.Igem.Org". 2020.

2016.Igem.Org. http://2016.igem.org/Team:Technion_Israel/Modifications/Rosetta.

- "Team:TU-Eindhoven/Modeling/Rosetta - 2016.Igem.Org". 2020. 2016.Igem.Org.

http://2016.igem.org/Team:TU-Eindhoven/Modeling/Rosetta.

- The Rosetta Software | Rosettacommons". 2020. Rosettacommons.Org.

https://www.rosettacommons.org/software/.

- Moretti, R., J. Bender, B., Allison, B., & Meiler, J. (2016). Rosetta and the Design of

Ligand Binding Sites, 1414, 47–62. https://doi.org/10.1007/978-1-4939-3569-7

