The Whole Script Of

SMS: Laboratory Notebook

Author: Kun Zhang, Tianzuo Zeng, Lydia

Yaqi Liu, Yuepeng Gu

Translator: Tianzuo Zeng, Lydia Yaqi Liu

7.13

Evening.

100 mL LB was heated to melt and cooled down by flowing water. Till temperature had came to about 40 Celsius degree, $100 \mu L$ Kanamycin was added. The solution was quick shaken and was separated into 5 Petri dishes. Waited till the plates became hardened. $\alpha D95$, which contained plasmid expressing GFP under T7 promoter, was inoculated to one of these dishes. Operation mentioned above was done in Super Clean Bench, bacteria was cultured in 37 Celsius degree for overnight.

7.14

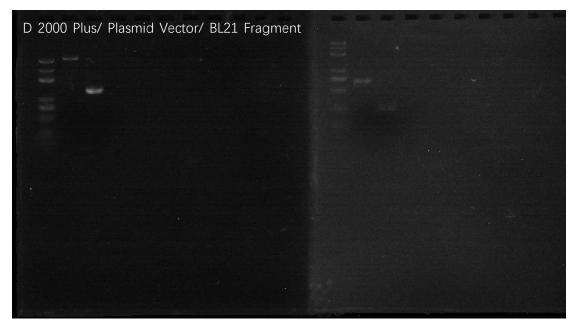
Noon.

Single colony harvested from bacteria cultivated overnight was inoculated to 4 mL LB Medium (contained 4 μ L Kanamycin)

Solution Preparation:

1L LB medium (10g Tryptone, 5g Yeast extract, 10g NaCl and pure water added to 1L) was made and separated into equally ten conical bottles (100ml for each). 5 of which were additionally supplied with 1.5g agarose powder each. 50 mL 50% glycerol was prepared through 25mL glycerol and water to 50mL. Solution were sterilized by heating to 121 Celsius degree.

Colony PCR Colony PCR was carried by polymerase Fast Pfu

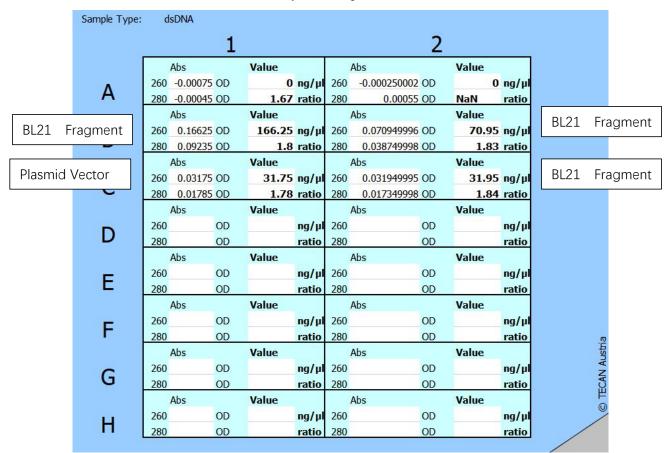

Target Sequence	Forward Primer	Reverse Primer	Template
0~210 (HpaB)	SMS-003	SMS-004	BL21
210~284 (HpaB)	SMS-005	SMS-006	BL21
284 to end (HpaBC)	SMS-007	SMS-008	BL21
Reverse PCR in plasmid vector	SMS-001	SMS-002	S059
piasiniu vectoi			

Time for extension in each turn:

120s for S059; 25s for BL21 Fragment 3; 10s for BL21 Fragment 1 & 2

7. 15

Agarose Electrophoresis


Templates were digested by Dpa I (2μL digest enzyme + 18μL Cutsmart)

Sample Purification:

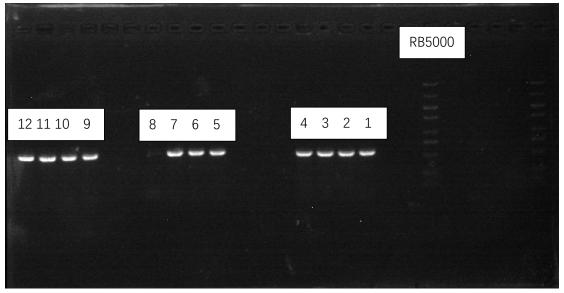
Sample Purification for PCR product was carried by Tiangen Sample Purification Kit, protocol followed.

Concentration measurement

The measurement was carried out by Nanodrop

Gibson Assembly:

Vector (1.8μL), BL21 Fragment 1/2/3 (0.3μL for each), 2.3μL Water, Gibson mix (2*) 5μL


7.16

Fragments constructed by Gibson assembly were made to an inversion. $50\mu L$ competent cells were separated equally into three, each was bathed in ice for 30 minutes after products of Gibson assembly were added into the cells. 42 Celsius degree water bath for 45 seconds. $500\mu L$ LB medium was added for each and cells were cultivated for 1 hour in 37 Celsius degree shaker. $150\mu L$ of each were equally spread onto agar plates with the help of glass beads.

7.17

Colony PCR
Colony PCR was carried by Taq mix in order to examine the product of Gibson Assembly.

Template	Forward Primer	Reverse Primer	Product
Colony	Primer Colony F	Primer Colony R	1,2,3,4,5,6,7,8,9,10,11,12
Colony	SMS_seq 001 F	SMS_seq 004 R	13,14,15,16,17,18,19,20

Another figure of gel which contained sample 13~20 was somehow lost. The results showed two stain for each sample. A probable explanation is additional sequence on E coli. Genome was targeted.

7.18

Strain 18 & 20 selected before were restored as bacterium 1:1 proportional to 50% glycerol solution.

Plasmid extraction

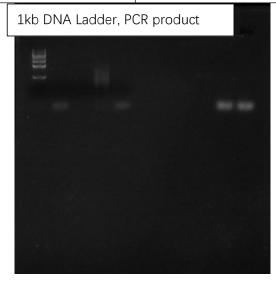
Plasmids in 18/20 were extracted by Tiangen plasmid extracting kit.

			1					2		
	1	Abs	160-	Value	*	ļ	Abs	# 1 A	Value	
۸	260	0.0001	OD	0.1	ng/μl	260	0.000499999	OD	0.5	ng/μl
4	280	0.0001	OD	1	ratio	280	0.000499999	OD	1	ratio
	1	Abs		Value		-	Abs		Value	
n	260	0.0629	OD	62.9	ng/μl	260	0.0558	OD	55.8	ng/μl
В	280	0.0325	OD	1.94	ratio	280	0.028200002	OD	1.98	ratio
				Value	1.0				Value	
_	260	0.0151	OD	15.1	ng/μl	260	0.011400001	OD	11.4	ng/μl
C	280	0.008	OD	1.89	ratio	280	0.006100001	OD	1.87	ratio
	1	Abs		Value			Abs		Value	
<u> </u>	260		OD		ng/μl	260		OD		ng/μl
D	280	i i	OD		ratio	280	A I	OD		ratio
	1	Abs		Value	3		Abs		Value	
_	260		OD		ng/μl	260		OD		ng/μ
	280		OD		ratio	280		OD		ratio
	1	Abs		Value	6		Abs		Value	
F	260		OD		ng/μl	260		OD		ng/μ
F	280	l l	OD		ratio	280		OD		ratio
	1	Abs		Value		1	Abs		Value	
_	260		OD		ng/μl	260		OD		ng/μ
G	280		OD		ratio	280		OD		ratio
	1	Abs		Value	9.		Abs		Value	
ш	260		OD		ng/μl	260		OD		ng/μl
Н	280		OD		ratio	280		OD		ratio

7. 19

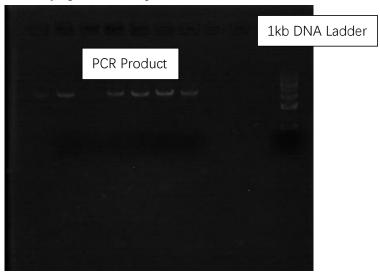
18 & 20 was each inoculated into 4mL LB medium.

Taq PCR was carried for sequencing.


Template	Forward Primer	Reverse Primer	Product
Plasmid extracted	SMS_seq 001 F	SMS_seq 004 R	Fragment of 18
from 18			
Plasmid extracted	SMS_seq 001 F	SMS_seq 004 R	Fragment of 20
from 20			

Products were examined by agarose electrophoresis on an 1 % gel.

Sequencing results had come out and showed plasmid 18 was what we exactly wanted. Therefore, further point mutation was carried by Fast pFu.

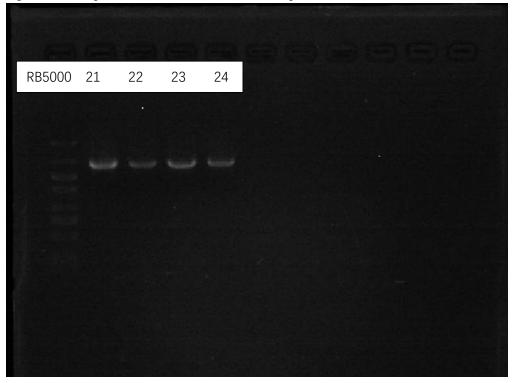

Forward Primer	Reverse Primer	Template	Extension time
SMS-009	SMS-010	Plasmid extracted	20s
		from 18	

7.21

Forward Primer	Reverse Primer	Template
SMS Gibson 9	SMS Gibson 10	Plasmid from 18
SMS Gibson 11	SMS Gibson 12	Plasmid form 18

Results were examined by agarose electrophoresis.

Gibson assembly was carried with $0.6\mu L$ product of 9/10 (concentration 82.45 ng/ μL), $1.7\mu L$ product of 11/12 (concentration 30.45 ng/ μL) as DNA fragments. Products of Gibson assembly were inverted into $\alpha D95$.


7.23

4 colony 21, 22, 23, 24 were picked and preserved on an agar plate.

PCR for sequencing was carried with Taq Mix.

Primer F	Primer R	Template
Seq 001F	Seq 004R	Colony 21, 22, 23 & 24

Agarose electrophoresis was made to examine the product.

Products were sent to sequencing as results showed good.

21, 22, 23, 24 were cultured in 5 mL LB medium in shaker overnight

7.24

Plasmid extraction

Plasmid extraction was done by using Tiangen Mini Plasmid Kit. Plasmids were extracted from all the bacteria contained solution cultured overnight. All the products were each dissolved in $40\mu L$ water.

Solution were measured by Nanodrop.

21: $106.35 \text{ ng/}\mu\text{L}$ 22: $79.45 \text{ ng/}\mu\text{L}$ 23: $208.05 \text{ ng/}\mu\text{L}$ 24: $19.45 \text{ ng/}\mu\text{L}$

Plasmid were transformed into BL21 competent cell by granting heat shock. After all the process, $200~\mu\text{L}$ bacteria contained medium were pipetted onto LB agar plate with kanamycin for

each. Agar plates were cultured overnight.

20200725

Based on the sequencing results, which showed plasmid 22 was a valid one.

2 colonies, named 25 and 26, were inoculated in 5 mL medium and cultured overnight in a shaker.

20200726

25 and 26 were preserved in 25% glycerol mix.

An additional BL21 strain was inoculated in medium.

20200727

L-dopa was firstly dissolved as 4 mM solution. 0μL, 22.5μL, 45μL, 67.5μL, 90μL, 112.5μL, 135μL, 157.5μL, 200μL were added into 96 well plate and supplied with water to 200μL to create a different concentration of 0mM, 0.5mM, 1mM, 1.5mM, 2mM, 2.5mM, 3mM, 3.5mM, 4mM.

Reaction was lasted for 30min, products were measured for OD400 by nanodrop.

< >		2	3	4	5	6	7	8	9
Α	0.08869	0.54269	0.98170	1.46140	1.89370	2.68729	3.29169	3.57879	3.8455
A	9996	9993	0003	0032	0004	9967	9886	9963	9989

To prepare M9 medium, solutions were made.

80mL 50% Glucose (50*): 40g glucose

80mL 2.5M MgSO₄ (500*): 49.294g MgSO₄*7H20

80mL 100mM CaCl2 (1000*): 0.88784g CaCl2

50mM 2.5% Yeast Extract (100*): 1.25g Yeast Extract

2*500mL H2O

Solution was each sterilized in 115 Celsius degree for 20 min.

20200728

0.271g tyrosine was tried to be dissolved in 30mL 50mM NaOH, but failed. It continued to fail when the concentration of NaOH was increased to 100mM. It succeeded when the concentration of NaOH had increased to 500mM.

The final concentration was 210mM (70*). $100\mu\text{L}$ solution was added into 7mL water, the pH value showed slightly above 7.

The solution was sterilized by 121 Celsius degree steam.

20200729

500mL (10*50mM) M9 medium was prepared by adding ingredients prepared before.

For each 50mM system: 1mL glucose solution, 100 μ L yeast extract solution, 100 μ L MaSO₄ solution and 50 μ L CaCl₂ solution.

Some LB (1000mL) was prepared as well, and equally distributed into 10 conical flasks. LB medium were sterilized by 121 Celsius degree steam for 20 min.

[Tyr]	0mM	OmM OmM		3mM	6mM	
Strain	BL21	рНраВС	рНраВС	рНраВС	рНраВС	

20200730

1mL solution of each sample cultured overnight are centrifuged and $180\mu L$ supernatant were taken out and $20\mu L$ NaIO4 was added for each. OD 400 test were taken by Nanodrop after 30 minutes reaction.

\Leftrightarrow		2	3	4	5	
A	0.335799992	0.327499986	0.390399992	0.476799995	0.683600008	NaIO4
В	0.308999985	0.283199996	0.319799989	0.353100002	0.486200005	without NaIO4
С	0.335399985	0.344199985	0.4014	0.433600008	0.683200002	NaIO4
D	0.314099997	0.293900013	0.339599997	0.363099992	0.512300014	without NaIO4
Tyr concentration	BL21	0	1.5	3	6	

Since the results wasn't satisfying, we decided to try again by M9

BL21	BL21	BL21	BL21	BL21	рНраВС	рНраВС	рНраВС	рНраВС	рНраВС	NA.	NA.
0mM	1.5mM	3mM	4.5mM	6mM	0mM	1.5mM	3mM	4.5mM	6mM		
TyR	TyR	TyR	TyR	TyR	TyR	TyR	TyR	TyR	TyR		

This was repeated for three times in 3 lines of 96 well plate.

20200731

96 well plate was broken someone dropped it onto ground accidently.

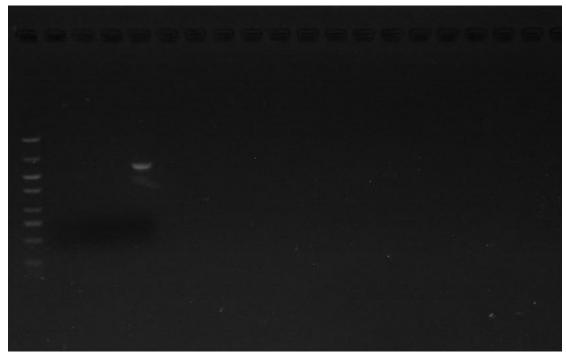
High preservation PCR:

1, primer: T7N-F; 564N-R 2, primer: T7N-F; 179N-R 3, primer: 564C-F; T7C-R 4, primer: 179C-F; T7C-R 5, primer: vector F; vector R

Template: BL21

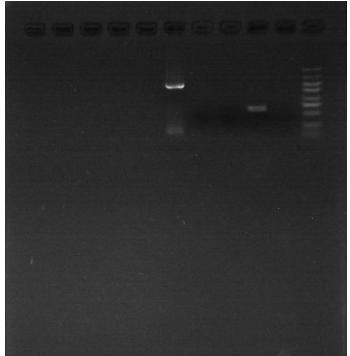
Extension time: 15s for 2 and 3; 90s for 1,4 and 5

Only 2 and 3 succeeded, examined by electrophoresis. However, they are discarded by accident


20200801

High preservation PCR:

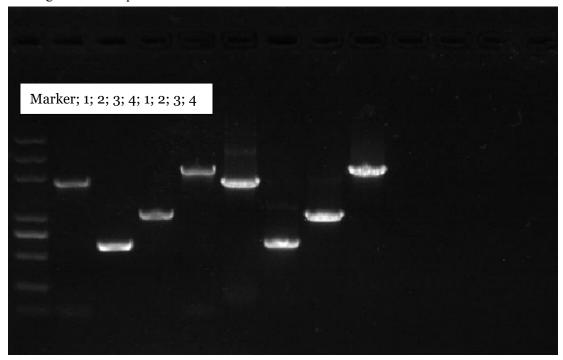
1, primer: T7N-F; 564N-R 2, primer: T7N-F; 179N-R 3, primer: 564C-F; T7C-R 4, primer: 179C-F; T7C-R


Template: BL21

Distribution: Marker; 2; 3; 5; 4

It is clear that, except lane 5 where fragment NO.4 resides, other lanes do not show positive outcomes. Thus, we conserve the successfully duplicated fragment NO.4. While debugging, we found that our devised primers for the amplification of plasmid framework have different temperatures of annealing, which could be the culprit to our constant failures. We thus re-devise primers for this sequence. For other fragments, we re-do the PCR.

Electrophoresis for the redo PCR: 1, 1, 3, 2, 1, Marker


The results did not match our expectations. Failing to debug, we turned to our instructor, Kun Zhang, for help. She performed the PCR for us--when observing her operation, we recognized that, the FasPFU polymerase which we used had precipitated, and that the BL21 template which we

used contained a high concentration of glycerin. These were two reasons that were later considered as the major reasons that led to our constant failures.

The PCR was repeated by our tutor, Zhang.

20200802

Agarose Electrophoresis results:

All the targeted fragments have been amplified. However, primer dimers appeared, which leads to a necessity for us to do a callback & purification of DNAs.

20200803

The re-devised primers for amplifying vector have arrived. We thus can conduct PCR experiment today.

PCR (extension time 90s) was applied on BL21 with primer Vector F-1 and Vector R to get the vector P70

The result was examined by agarose electrophoresis.

We saw no trace of PCR product--the shade below the picture could be primer dimer--given that we have never successfully amplified vector, there may be something wrong with the template.

20200804

Goldengate assembly were applied to the fragments. Products were transformed into competent cells. Final products were cultured on LB agar plates with CM.

20200805

The result showed the worst we expected. None was successful

A strain contained plasmid p70 (the vector we used) were preserved in 25% glycerol.

P70 plasmid was extracted from that by Tiangen plasmid extract kit and dissolved in $50\mu L$ water.

Levodopa standard curve was measured again with previous protocol.

\Leftrightarrow		2	3	4	5
Е	0.049899999	0.970899999	1.991600037	3.198299885	3.555900097
F	0.0515	1.037799954	2.029599905	3.307399988	3.64199996
G	0.0491	0.972100019	1.995300055	3.328500032	3.705499887
	0mM Tyr	1.5mM Tyr	3mM Tyr	4.5mM Tyr	6mM Tyr

The result showed a much gentle slope than reference (the one measured before as well).

20200806

Concentration of fragments yielded in previous PCRs were measured for concentration by Nanodrop.

1 (T7N (564)): 159.1ng/ μ L add 0.3 μ L in assembly

2: $(T7N(179))374.6ng/\mu L$ add $0.2\mu L$ in assembly 3: $(T7C(564))117.6ng/\mu L$ add $0.5\mu L$ in assembly 4: $(T7C(179))167.1ng/\mu L$ add $0.3\mu L$ in assembly 5: $(vector)57.4ng/\mu L$ add $1\mu L$ in assembly 6: $(vector)90.3ng/\mu L$

Fragments were mixed for Goldengate assembly.

Goldengate assembly system:

1: 2; B1; 4; 5

2: 2; B2; 4; 5

3: 2; B3; 4; 5

4: 2; B4; 4; 5

5: 1; B1; 3; 5

6: 1; B2; 3; 5

7: 1; B3; 3; 5

8: 1; B4; 3; 5

B1: VVD; B2: pMag-nMag; B3: MagFast-nMagHigh; B4: LOV

pHpaBC and BL21 were inoculated again to repeat the previous yielding test.

20200807

Goldengate products were transformed into competent cell. $200\mu L$ were inoculated onto CM LB agar plate. The bacteria were cultured overnight

Standard curve was measured again

<>		2	3	4	5
A	0.041299999	0.99940002	1.952600002	3.223500013	3.7421
В	0.040199999	0.99970001	1.963799953	3.192699909	3.761899948
С	0.046500001	0.9903	2.007800102	3.247499943	3.787400007
	0mM Tyr	1.5mM Tyr	3mM Tyr	4.5mM Tyr	6mM Tyr

However, the results were abnormally low again. Though Bryan was not at lab at that time, he informed the operator, David, that the reaction time might be too short.

20200808

Goldengate failed again

Previous PCRs were practiced again with Taq

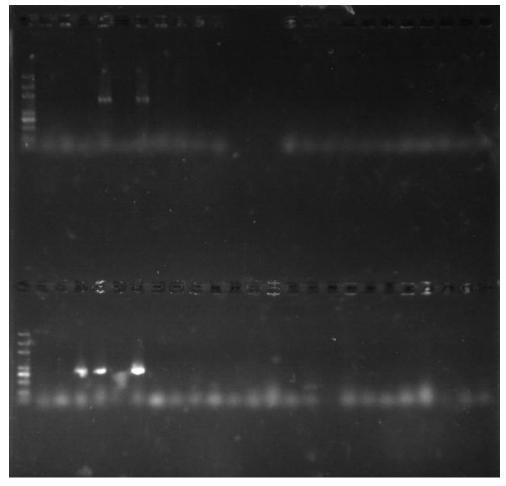
1: 2; B1; 4; 5

2: 2; B2; 4; 5

3: 2; B3; 4; 5

4: 2; B4; 4; 5

5: 1; B1; 3; 5


6: 1; B2; 3; 5

7: 1; B3; 3; 5

8: 1; B4; 3; 5

20200809

PCR products were examined by agarose electrophoresis

The results were devastating despite.

Some more LB medium was prepared with previous protocol.

20200811

Levodopa yielding test was carried again with following distribution in a 96 well plate

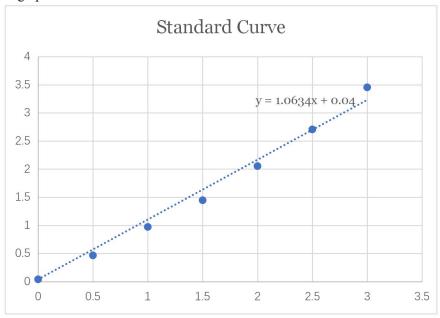
0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM
M	M	M	M	M	рНраВ	рНраВ	рНраВ	рНраВ	рНраВ
BL2	BL21	BL2	BL21	BL2	C	C	C	C	C
1	LB	1	LB	1	LB	LB	LB	LB	LB

LB		LB		LB					
0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM
M	M	M	M	M	рНраВ	рНраВ	рНраВ	рНраВ	рНраВ
BL2	BL21	BL2	BL21	BL2	C	C	C	C	C
1	LB	1	LB	1	LB	LB	LB	LB	LB
LB		LB		LB					
0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM
M	M	M	M	M	рНраВ	рНраВ	рНраВ	рНраВ	рНраВ
BL2	BL21	BL2	BL21	BL2	C	C	C	C	C
1	LB	1	LB	1	LB	LB	LB	LB	LB
LB		LB		LB					
0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM
M	M	M	M	M	рНраВ	рНраВ	рНраВ	рНраВ	рНраВ
BL2	BL21	BL2	BL21	BL2	C	C	C	C	C
1	M9	1	M9	1	M9	M9	M9	M9	M9
M9		M9		M9					
0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM
M	M	M	M	M	рНраВ	pHpaB	рНраВ	рНраВ	рНраВ
BL2	BL21	BL2	BL21	BL2	C	C	C	C	C
1	M9	1	M9	1	M9	M9	M9	M9	M9
M9		M9		M9					
0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM
M	M	M	M	M	рНраВ	рНраВ	рНраВ	рНраВ	рНраВ
BL2	BL21	BL2	BL21	BL2	C	C	С	C	C
1	M9	1	M9	1	M9	M9	M9	M9	M9
M9		M9		M9					

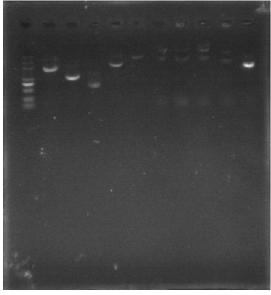
All concentration values refer to the concentrations of Tyr in each well.

After being cultured for 2h, IPTG were added $2\mu L$ for each.

The rest were cultivated overnight.


Goldengate products, pHpaBC and plasmids (B1, B2, B3, B4) were transformed into different competent cells where T7RP was expressed independently by heat shock.

To get a valid standard curve, David carried standard curve measurement again for a period. Varying concentrations were 0mM, 0.5mM, 1mM, 1.5mM, 2mM, 2.5mM, 3mM, 3.5mM, 4mM Just after mixing:


\Leftrightarrow	1	2	3	4	5	6	7	8	9
A	0.0399	0.4074	0.7602	1.0985	1.5059	1.8805	2.3248	2.8471	2.9698
	99999	00012	00024	00013	00025	99976	99912	00019	99893
В	0.0421	0.4090	0.7609	1.0993	1.4716	1.9445	2.3898	2.8468	3.0318
	99999	99996	00021	00027	00056	99986	99969	99986	99929

0 n	0.0421 00001 ninutes after	0.4081 99996	0.7674 00026	1.0977	1.5565 99975	1.9588 99975	2.3980 99899	2.9109 00116	3.0480 99995
	initites arter	mixing.							
		2	3	4	5	6	7	8	9
	0.0401	0.4271	0.8669	1.2885	1.8118	2.3517	3.0302	3.6956	3.7358
7	00001	9999	00027	99968	00003	99965	00005	00033	00028
	0.0418	0.4323	0.8653	1.2865	1.7711	2.4198	3.1064	3.6626	3.7716
	0.0418	99988	0.8033	99994	00044	00043	00013	99938	00008
	0.0421	0.4287	0.8719	1.2856	1.8713	2.4321	3.1038	3.7439	3.7988
	00001	99987	99979	99964	99999	00058	99956	99958	99889
n	ninutes after	mixing:							
		2	3	4	5	6	7	8	9
	0.0403	0.4345	0.8968	1.3349	1.8818	2.4342	3.1449	3.8571	3.93129
	99998	99996	99998	00022	00056	00048	99981	0001	9925
	0.0421	0.4411	0.8937	1.3332	1.8345	2.5044	3.2228	3.8015	OVER
	00001	00001	00004	99994	99972	99912	00016	00082	OVER
	0.0421	0.4368	0.9023	1.3314	1.9378	2.5174	3.2321	3.8847	3.95370
	99999	00003	0.7023	00037	0005	00026	0001	0006	0066
n	ninutes after								
	1	2	3	4	5	6			8 9
	0.04060	0.44330	0.92849	1.37520	1.94000	2.50710	3.24480	3.9614	
	0002	0009	9997	0033	0057	0105	0091	992	
	0.04170	0.44980	0.91720	1.37100	1.89020	2.58220	3.32319		
	0002	0014	0029	0051	0019	005	9987	006	
	0.04280	0.44580	0.92659	1.36969	1.99790	2.59109	3.33270	OVER	OV
	0002	0006	9979	9955	0009	9977	0014		ER
J	minutes afte	er mixing:	2	1	5	6	7	8	9
	0.0403	0.45759	0.96039	1.42820	2.01690	2.60299	3.34380	3.98679	
	0.0403	9998	9985	0006	0063	9926	0068	9955	
	0.04210	0.46610	0.95260	1.42519	1.96510	2.68160	3.42499	3.96479	
	0.04210	0007	0.75200	9986	005	0094	9952	9881	
	0.04170	0.46000	0.96179	1.42279	2.07809	2.69039	3.44289	OVER	OV
	0002	0008	9979	9945	9966	9885	9942	OVER	ER
0	minutes afte		3313	,,,,,	,,,,,	7002	,,,. <u>.</u>		LIC
	1	2	3	4	5	6	7		8 9
	0.04019	0.46430	0.97479	1.44939	2.05119	2.65079	3.39420		OV
	9999	0007	9991	9948	9913	999	0087	OVER	ER
	0.04170	0.47130	0.96780	1.44910	1.99899	2.73040	3.48510	3.9897	9 OV
		0006	0021	0018	9953	0085	0031	997	6 ER
	0002	0006	0021	0010					
		0.46560	0.97560	1.44340	2.11170	2.73799	3.48300	OVER	OV

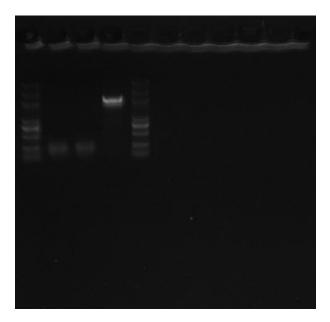
A graph was illustrated for the last measurement.

20200812 All Goldengate failed

Previous BsaI products were examined by agarose electrophoresis.

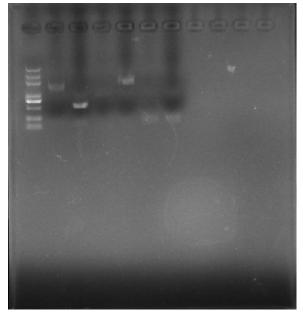
RB5000; 1; 2; 3; 4; 6; B1; B2; B3; B4; 6

Some colonies of competent cell


OD600 measurement was carried for bacteria cultivated the day before by Nanodrop.

< >		2	3	4	5	6	7	8	9	10	11
	1.038	1.059	1.039	1.015	1.045		1.226	1.250	1.207	1.196	1.085
A	10000	29994	29996	69998	30000	0.046	19998	10001	10003	09999	19995
	4	6	5	3	7		5	7	4	7	2
	1.103	1.072	0.999	1.013	1.064	0.048	1.357	1.325	1.294	1.289	1.192
В	00004	00002	59999	00001	20004		90002	79994	99995	89994	19994
	5	7	3	1	4	4	3	2	7	5	5

1.215	1.316	1.308	1.334	1.383	0.046	1.120	1.060	1.106	1.162	1.131	
00003	90001	20000	49995	20004	99999	39995	09995	99999	29999	10005	С
3	5	2	5	9	8	2	9	3	1	9	
0.046	0.045	0.046	0.047	0.047	0.046	0.050	0.047	0.049	0.048	0.047	
59999	60000	39999	0.047	20000	99999	79999	60000	0.048	30000	0.047	D
9	1	9	1	2	8	9	1	2	2	1	
0.048	0.046	0.063	0.213	0.231	0.048	0.045	0.142	0.227	0.317	0.344	
09999	99999	29999	59999	09999	09999	69999	0.142	0.237	09998	19998	Е
8	8	9	5	3	8	9	O	/	8	5	
0.054	0.048	0.104	0.235	0.204	0.047	0.228	0.273	0.283	0.318	0.194	
0.034	59999	69999	20000	0.204	89999	40000	40000	10000	19999	99999	F
U	9	9	3	2	9	7	9	9	2	3	
0.048	0.044	0.048	0.220	0.076	0.045	0.281	0.312	0.270	0.188	0.148	
0.0 4 8	39999	90000	59999	20000	20000	10000	79999	30000	80000	69999	G
4	9	1	4	1	1	5	1 2 2 2 2	1	7	9	


20200813B1, B2, B3, B4 were extracted from bacteria cultivated.Concentrations were measured by Nanodrop.

dsDNA 1	, were incusured	260	280	Conc ng/µl	Ratio	Sample ID
_				81		ı
C	'1(B1)	0.19085	0.0999	190.85	1.91	
C	22(B2)	0.14405	0.0747	144.05	1.93	
D	01(B3)	0.12465	0.0651	124.65	1.91	
D)2(B4)	0.15235	0.0811	152.35	1.88	

Products were examined by agarose electrophoresis (Marker, 1, 2, 3, 4, 6, B1, B2, B3, B4, 4)

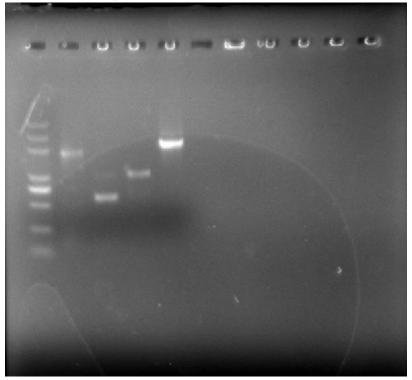
20200814PCR was carried based on templates (1; 2; 3; 4; 5; 6)

BsaI digestion (37 Celsius degree for 1 hour and 80 Celsius degree for 20 minutes) was carried on B1, B2, B3, B4

20200815 The very same cultivation was carried again.

0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM	
M	M	M	M	M	рНраВ	рНраВ	рНраВ	рНраВ	рНраВ	
BL2	BL21	BL2	BL21	BL2	С	С	С	С	C	
1	LB	1	LB	1	LB	LB	LB	LB	LB	
LB		LB		LB						

0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM	
M	M	M	M	M	рНраВ	рНраВ	рНраВ	рНраВ	рНраВ	
BL2	BL21	BL2	BL21	BL2	C	С	C	C	C	
1	LB	1	LB	1	LB	LB	LB	LB	LB	
LB		LB		LB						
0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM	
M	M	M	M	M	pHpaB	рНраВ	рНраВ	рНраВ	рНраВ	
BL2	BL21	BL2	BL21	BL2	C	С	C	C	C	
1	LB	1	LB	1	LB	LB	LB	LB	LB	
LB		LB		LB						
0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM	
M	M	M	M	M	pHpaB	pHpaB	рНраВ	рНраВ	рНраВ	
BL2	BL21	BL2	BL21	BL2	C	С	C	C	C	
1	M9	1	M9	1	M9	M9	M9	M9	M9	
M9		M9		M9						
0m	1.5m	3m	4.5m	6m	0 mM	1.5mM	3mM	4.5mM	6mM	
M	M	M	M	M	pHpaB	рНраВ	рНраВ	рНраВ	рНраВ	
BL2	BL21	BL2	BL21	BL2	C	С	C	C	C	
1	M9	1	M9	1	M9	M9	M9	M9	M9	
M9		M9		M9						
0m	1.5m	3m	4.5m	6m	0mM	1.5mM	3mM	4.5mM	6mM	
M	M	M	M	M	pHpaB	рНраВ	рНраВ	рНраВ	рНраВ	
BL2	BL21	BL2	BL21	BL2	C	C	C	C	C	
1	M9	1	M9	1	M9	M9	M9	M9	M9	
M9		M9		M9						
	1	1		1				1	1	

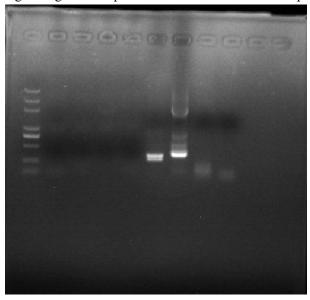

High preservation PCR was carried with Down PCR program

Then preservation I are was earlied with Bown I are program										
Template	Primer F	Primer R	Extension Time							
1	T7N-F	T7N-564-R	80s							
2	T7N-F	T7N-179-R	80s							
3	T7C-564-F	T7C-R	80s							
4	T7C-179-F	T7C-R	80s							

Taq PCR were carried for template 3 and template 6 (Primers: vector-F & vector-R)
The products were examined by agarose electrophoresis:

Agarose gel electrophoresis examination before recycling:

BsaI products were recycled by Tiangel Purification Kit.



Template	Forward primer	Reverse Primer
1+3+B1	T7N-F	T7N-F
2+4+B1	T7C-R	T7C-R

5	Vector-T7-F	Vector-T7-R
P70	Vector-T7-F	Vector-T7-R

Taq PCR were carried

Agarose gel electrophoresis was carried to examine purification products and PCR products.

Distribution: DL5000; 1; 2; 3; vector; 1+3 B1; 2+4 B1; 5; P70

20200819

	1	2
С	ddH2O	ddH2O
D	P70	22
Е	1	2
F	3	4

 500μ L P70+500μL 50%glycerol \rightarrow -20%

Purification & Plasmid Extraction

Done by Tiangen plasmid extraction Kit

Products are measured by ? for DNA concentration

Electrophoresis (1% agarose

Marker

Trans5K PCR product

Fly	1μL
Fly Buffer	20μL
F	2μL
F	2μL
dNTPs	8μL

DNA	0.1μL
H2O	66μL

2×Taq Mix	15μL	390(×26)
F	2μL	25μL
R	2μL	25μL
H2O	11µL	290μL

20200821

1) Delete three base pairs

			templates
1	DEL-F/DEL-R	A 7.3kb	pHpaBC-22
2	DEL-F/DEL-R1	B 2.7kb	pHpaBC-22

^{2.1+2.2} Gibson ①transform directly

2) Change the source of HpaBC

3	SMS-003/SMS-008	B 2.1kb	pHpaBC from 家恒	Fragment of
				НраВС
4	SMS-001/SMS-002	A 5.2kb	pHpaBC-22/S059	Vector-

3) Mutate the locus of HpaBC (from MOPU)

(5)	Locus 201	SMS-003/004	C659bp	рНраВС
6	Locus 201 284	SMS-006/210F-F	247bp	from 家恒片
7	Locus 284	SMS-007/008	1286bp	段

5、6、7+4 Gibson

4) T7+Photoswitches

Vector-T7-R1/vector-T7-F	3.5kp	P70
T7N-F1/T7N-564-R1	1.5kp	BL21

DpnI dispose

Agarose gel extraction: Vector T7N 5

DNA purification: 2.3.4.6

Fragment1	
Cutsmart	5μL
DNA	50μL
DPnI	1μL
H2O	4μL

37 Celsius degree 1h

- 1. Take 5μL, and then do the purification
- 2. Take 3µL Gibson+2µL H2O

20200824

- 1. Gel extraction fragment Vector "5" T7N-564
- 2. Gibson assembly 3+4:

Agarose gel: 100mL TAE buffer+1g agarose powder+ dye (brown bottle) Gold View

PCR product/ restriction enzyme cutting product

Color: sample

No Color: PCR/3 μ L product of restriction enzyme cutting+ 2 μ L loading buffer (containing glycerin dye)

- 1. Take 2μL loading buffer
- 2. Take 3µL sample, and then mix it with the loading buffer
- 3. Mix the solution with pipette
- 4. Sampling

Gibson

Vector:	50ng	inset	20ng
	2×Gibson Mix		5μL
	4 (50ng)		0.2μL
	3 (20ng)		1.5μL
	H2O		3.3μL

50°C 1h

Transformation: 3+4 pET28a-HpaBC-DDC (→put into the 4°C fridge)

- 1. Pipette $50\mu L \rightarrow 3+4$
- 2. Take $2\mu L pE728$ a-HpaBC-DDX \rightarrow ??

Ice bath 30min (clean bench)

42°C (metal bath) 45s

After that, put it right on the ice 2min

On the clean bench, 500µL LB/tube

37°C recovery 1h

20200827

Bacteria culture DEL-3bp ①②③ 500μL+μL glycerol 50%

Plasmid extraction

Measure the concentration, gel extraction

30μL/tube			8?
	2×Taq Mix 15μL		120
	F	1μL	8μL
	R	1μL	8μL
	H2O	13μL	104μL
Tm	55°C	72°C	1: 20s

Plasmid: 0.5 5000rpm 1min

Discard 250 μ L supernatant

Repetitive blowing and suction

Resuspend thallus

Spread the solution all over the plate

10×T4 ligase							
Buffer 1µL							
T4 ligase 0.5μL							
BsaI 0.5μL							
① T7N564 1μL	② T7N179	③ T7N564-LOV	④ T7C-179-LOV				
⑤ T7C564 1μL	⑥ T7C179	⑦ T7C-564-LOV	8 T7C-179-LOV				
Vector 1µL	Vector	Vector	Vector				
(9)		(12)	(12)				
(37°C 5min 16°C 10min)×10							
37°C 10min	50° 5min	85°C 5min	16°C ∞				

20200828

PCR: 16 tubes

Blue pen marked: 1-16

Positive control: "plasmid 22" +0.5µL

Primer: SMS-seq 001F & cexu-HpaBC-R Chemical transformation: 564-B1 179-B1 564-B4 179-B4

Gel preparation Cell culture

20200829

Bacteria colony PCR

3+4replace HpaBC DEL3 3+4 replacement

Taq Mix	Taq Mix				
	7.5μL×30=225μL				
F	0.5μL×30=15μL				
R	$0.5\mu L \times 30 = 15\mu L$				
H2O	6.5μL×30=195μL	15μL×30			

Taq Mix	13ομL	25μL×5=125	Tm 55°C
F	10μL	2μL	72°C 1'30s
R	10μL	2μL	
H2O	110μL	21μL	
H2O	260μL	50μL	

T7 polymerase divide into two parts: (two locus) 564 179				
A: 564-VVD-VVD	E: 179-pMag-nMag			
B: 564-pMAG-nMAG	F: 179-pMagFast-nMagHigh			
C: 564-pMagFast2-nMagHigh	G: 564-LOV			
D: 179-VVD-VVD	H:179-LOV			

A: 564-VVD-VVD	(4)
B: 564-pMag-nMag	(12)
C: 564-pMagFast2-nMagHigh	(19)
D: 179-VVD-VVD	(27)(29)(31)
E: 179-pMag-nMag	(39)
F: 179-pMagFast2-nMagHigh	(41)
G: 564-LOV	(50)(55)
H: 179-LOV	(63)(64)

Design the mutated primer: HpaBC from MODu & substitutional primer 1 SMS-008-F2

	Negative	Positive	Experiment
0	×	×	×
2h	×	✓	✓

3 4h	×	✓	✓
5 6	×	✓	✓
7 8	×	✓	×
9 10	×	✓	×
11 12	×	✓	×

 $17:00 \rightarrow 2$ groups

Without light (negative)

With light (experiment)

After the sampling, make sure that the experiment group is kept in dark.

19:00→3 groups Without light (negative)

Experiment

21:00 With light (positive)

23:00 take 3 examples each from 3 groups

Plasmid extraction 2 transformation BL21

	Negative	Positive	Experiement		200μL/hole
0	×	×	×		
2	×	✓	✓	S2	600μL
4	×	✓	✓	S4	
6	×	✓	✓	S6	
8	×	✓	×	S8	1.2mL
10	×	✓	×		
12	×	✓	×		
24	×	✓	×		

Every sample:

- 1. Centrifuge, and abandon the supernatants (12000rpm, 15min)
- 2. Add 600µL PBS, and resuspend
- 3. Centrifuge, and abandon the supernatants; then, add 600µL PBS, resuspend
- 4. Add samples to ELIASA

Direction of sample adding

												\rightarrow
	1	2	3	4	5	6	7	8	9	10	11	12
A												
В												
C												
D												
Е												
F												
G												
Н												

- 1 S2-S10 5 packets
- (2) S12,S24 positive 8, 10, 12 5packets
- 3 Positive 24, negative 6-12 5packets
- (4) Negative 24, blank 2packets

WT2-14	WT2-21	WT2-30	WT2-38	10mL
MD6-14	MD6-21	MD6-30	MD6-38	LB+Kan+CM

2 tubes for each sample: 10mL LB+ Kan+ 20µL bacteria solution

T74A1-WT2 T74A1-MD6

1 tube for each sample: 10mL LB (without antibiotics) +20μL bacteria solution

T74A1 10μL

1 tube for each sample: 10mL LB (without antibiotics) +20µL bacteria solution

Culture the bacteria separately with pipette

T74A1 T74A1+WT2 T74A1+MD6

Put the bacteria colony into the 1mL PBS and then resuspend it

400μL PBS+100μL bacteria solution vortex

Take $200\mu L/hole$, add it into the ELIASA

Every sample needs to be measured twice, and then measure OD600

Supernatant: take $450\mu L$ and then add $50\mu L$ NaI2O4 solution

After the vortex, take 200µL/hole and add samples to ELIASA

Every solution needs to be measured twice, and then measure OD400

With light	t		WT2/4 21			21			
Without light			7			16			
With	WT214	21	30	38	74	MD62	30	38	
light									

	1	2	3	4	5	6	7	8
Without	WT214	21	30	38				
light								

8h

5: WT2 21+ 12: WT2 30-13: WT2 74+ 14: MD6 21-

15: WT2 14-

		(1)	(2)	(3)	(4)
With light	WT2	14	21	30	38
		(5)	(6)	(7)	(8)
	MD6	14	21	30	38
		(9)	(10)	(11)	(12)
Without light	WT2	14	21	30	38
		(13)	(14)	(15)	(16)
		14	21	30	38
		(17)	(18)	(19)	
		T74A1	T74A1-WT2	T74A1-MD6	

	1	2	3	4	5	6	7	8	9	10	11	12
A	1	2	3	4	5	6	7	8	9	10	11	12
В	1	2	3	4	5	6	7	8	9	10	11	12
С	13	14	15	16	17	18	19	8h				
D	13	14	15	16	17	18	19					
Е	1	2	3	4	5	6	7	8	9	10	11	12
F	1	2	3	4	5	6	7	8	9	10	11	12
G	13	14	15	16	17	18	19	16h				
Н	13	14	15	16	17	18	19					

B plate 24h 28h C plate 32h 44h

C plate: A-B: 44h 10/04 9:38

C-D: 28h