# **Benchling**

**UPDATED 20.10.2020 18:47** 



by Franka Butzbach (created by Philip Schulz)



# Introduction

Digestion Ligation is a procedure in restriction cloning and it is the procedure with which we assemble the constructs in our iGEM project. ALWAYS: when we do DIGLIG, which needs 4h time then first check if one of the small blocks A or B is available! In this protocol, we use the insertion of MFa into the p02 Vector as an example

# **Materials**

- > MQ
- > 10X Tango Buffer
- > ATP
- > T4 DNA Ligase
- > Enzymes
- > BSA
- > T4 Buffer (as an alternative to 10X Tango Buffer and ATP)
- > Plasmids
  - > Backbone and insert

## **Procedure**

### How to Calclulate the Concentrations in the case of our MFalpha:

1. https://nebiocalculator.neb.com/#!/ligation

Go to this website and type in the DNA concentrations and bp lengths that you have for insert and vector, choose 2:1 ratio. So in this example we need around 13ng of insert.

**Note:** For LII assembly, You have to put in the bp length of the whole plasmid and not that of the insert it contains.



- 2. The length of our Mfa is 317bp (including the amplification overhangs) and we choose (2:1) ratio, so you need 12.8ng of insert Mfa.
- 3. Nanodrop your insert: we have 68.5ng/µL Mfa

Calculate how much of the stock DNA solution needs to be added. in the case of MFa:  $(12.8ng)/(68.5ng/\mu L) = 0.19\mu L. \text{ This is too small a volume to pipette directly. If this happens, you need to dilute it (for example, <math>1.9\mu L$  of the insert in  $8.1\mu L$  of MQ) This would yield a solution with MFa concentration of  $12.8ng/\mu L$  so you could just add  $1\mu L$  of this dilution to your reaction to add 12.8ng. Use the formula c1xV1 = c2xV2 to dilute your inserts.

V<sub>1</sub>=amount of stock you add to dilution

C<sub>1</sub>= conc. of stock (NANODROPED)

 $V_2$ = final volume= added stock plus MQ to dilute (10 $\mu$ L)

 $C_2$  = conc. of dilution (=required insert DNA mass)

 $V_1$  uL + (  $10\mu$ L- $V_1$  uL) uLMQ= dilution (total volume of  $10\mu$ L)

#### LI construct DIGLIG

|   | А                             | В                                  | Example for MFa in p02                          |
|---|-------------------------------|------------------------------------|-------------------------------------------------|
| 1 | H20                           | fill up to 15 ul                   | 10.5 µl                                         |
| 2 | Vector (7.5 nM)               | calculate as<br>described<br>above | dilute 1 ul in 3<br>ul MQ, then add<br>1 ul     |
| 3 | Insert (15 nM)                | calculate as<br>described<br>above | dilute 1.9 ul in<br>8.1 ul MQ, then<br>add 1 ul |
| 4 | 10X Tango<br>Buffer           | 1 μΙ                               | 1 μΙ                                            |
| 5 | T4 DNA Ligase<br>(5 units/µl) | 0.25 μΙ                            | 0.25 μΙ                                         |
| 6 | Enzyme (5<br>units/µI)        | 0.25 μΙ                            | 0.25 μΙ                                         |
| 7 | ATP (10 mM)                   | 1 μΙ                               | 1 µI                                            |

### LII constrsucts DIGLIG

|   | А                                                             | В                                  |
|---|---------------------------------------------------------------|------------------------------------|
| 1 | H20                                                           | fill up to 15 ul                   |
| 2 | Vector (7.5 nM)<br>p(10) for all!                             | calculate as<br>described<br>above |
| 3 | Insert A-B<br>Promoter (15<br>nM)                             | calculate as<br>described<br>above |
| 4 | Insert B-C MFa<br>or dummy BB6<br>for B+ (15 nM)              | calculate as<br>described<br>above |
| 5 | Insert C-D<br>Receptor (15<br>nM)                             | calculate as<br>described<br>above |
| 6 | Insert D-E<br>Fluorescent<br>protein(15 nM)<br>125.9 ng (2:1) | calculate as<br>described<br>above |
| 7 | Insert E-F<br>Terminator (15<br>nM)                           | calculate as<br>described<br>above |
| 8 | Insert F-G BB9<br>dummy (15 nM)                               | calculate as<br>described<br>above |
| 9 | 10X Tango<br>Buffer                                           | 1 .5 µl                            |

| 10 | T4 DNA Ligase<br>(5 units/µl) our<br>tube has<br>400000 u per<br>ml-> 400u/uL | 0.25uL                                                                          |
|----|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 11 | Enzyme (5<br>units/µl)                                                        | 0.25 µl dilution:<br>(1uL EZ in 3uL<br>MQ =to volume<br>4uL) -> then<br>add 1uL |
| 12 | ATP (10 mM)                                                                   | 1 µl                                                                            |

4. The program on the thermocycler is **diglig long**, which can also be used for short insert as well as for the LII constructs.

