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PROOF OF CONCEPT

We increased the speed of our characterization 
constructs (Fig. 2), and found that the speed 
increase relative to degradation rate aligned 
with our predictions (Fig. 3)

Fig 3. A comparison between 
the relative degradation rates 
at steady state and τ 1/2 (from 
Fig 2)

Fig 2: Time course FACS 
measurements of inducible 
constructs (as Fig 1.). Data points 
are the geometric mean of three 
biological replicates normalized 
to steady state (max 
fluorescence). Time points after 
steady state not shown. Shading 
represents geometric std
deviation

Fig 4: Raw (top) and ss normalized (bottom) 
fluorescence measurements of our characterization 
constructs at original (50ng/mL aTc) and increased 
production parameters  (85ng/mL aTc). Data 
collected as (Fig 1 and 2).
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DYNAMIC CONTROL
We collaborated with UMaryland iGEM to increase 
the response speed of their copper detector 

Fig 6: Time course 
measurements  of modified 
copper sensing parts 
(Bba_K2333437-42). Parts 
were created by adding 
different strength pdts onto 
the existing circuit, just as 
any future team using this 
system would. Data 
collected and displayed as 
Fig 1. and 2 

We created a searchable outreach 
database with the projects of gold 
medal teams from the past two 
years. Each of the 1,439 entries is 
standardized for ease of use, and 
organized by a number of 
parameters for search-ability.

To enable multi protein use, 
we developed a model that 
accounts for protease loading 
and saturation effects and fit 
it to our data by using 
Bayesian parameter 
estimation with MCMC.

Fig. 9: MCMC parameter estimation correctly 
estimates simulated values for both beta and 
gamma (15 and .03)., and identifies a strong 
positive correlation between beta and gamma. 

To demonstrate that our system could create dynamic circuits, we 
constructed and tuned an incoherent feed forward loop (IFFL), which 
generates a pulsatile output.
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To help future teams, we created E. coli codon-
optimized cloning-ready protein degradation tags 
that can be used for one-step cloning with any 
assembly type.

Fig. 1: Observed relative degradation rates of our pdt tagged 
inducible constructs (BBa_K2333427-33) at steady state (ss). 
Each data point represents the geometric mean of at least 
10,000 single cell measurements taken by FACS
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Fig 7: Schematic of the architecture of an 
IFFL. An IFFL’s pulsatile output depends on 
the activation of Z by X (1) before a 
sufficient amount of protein Y is generated 
to have a repressive effect (2), at which 
point the inhibition and activation of Z 
balance out to a steady state (3). 

Then the following differential equation 
represents [x] at a given time t:

In order to provide a launching pad
for future work on dynamic circuits,
we created a simple, modular and
predictable degradation based
system for the control of gene
expression speed using an E. coli
orthogonal Lon protease and
associated protein degradation tags
(pdt).

Consider a model where: X is an inducible
gene which, once activated, produces
protein x at a rate α and degrades protein x
at a rate 𝛾.

We can then determine that [x] at steady
state will be α /	𝛾, and that the time it takes
for [x] to reach half of that value (τ1/2) is
ln(2)/ 𝛾, and thus determined by 𝛾 alone.

Since 𝑥-- = 	
⍺
0
, then we should be 

able to increase ⍺ to maintain xss
without changing speed.

Fig 8: Creating and tuning the sharpness 
of our IFFL’s pulse behavior.  Time course 
FACS measurements of inducible 
constructs in an IFFL regime. Methods and 
constructs as Fig. 2.


