

cityuigem2020@gmail.com

Table of Contents

Easy Modeller	
AutoDock Tools	4
Swissdock	8
PatchDock	10
DockThor	11
EDock	13
LIGPLOT**	14
PyMOL Visualization Tool**	15

Easy Modeller

Purpose

• Comparative modelling of unknown protein structure

Enzyme	Source of the structure used in our project
Polyurethanase esterase A (PueA)	A homology or comparative modeling of protein program was adopted to generate the 3D structures of proteins by inputting their amino acid sequence, and corrected and optimized by YASARA and PROCHECK

- 1. Identify homolog that can be used as template(s) for modelling via Protein BLAST based on target-template identity
- 2. Choose the first four results with the highest similarity index as the template from the protein bank
- 3. Input the amino acid sequence information for our target as the input parameter
- 4. Provide template information for the software using 'Load template' feature
- 5. The 'Perform Alignment' feature will align the query sequence (target) with the template(s)

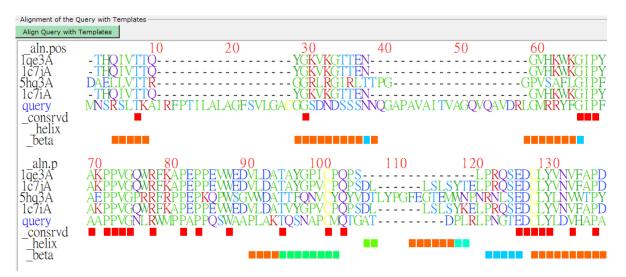


Fig. 1 : Alignment between the sequences of PueA and template

3. Input the templates into EasyModeller Program to generate possible structures of the enzyme molecule.

7 EasyMod								
Load Inputs	Align Templates Al	ign Query Build Model						
Settings								
Modeller Tut	torial		http://salila	ab.org/mo	deller/tutorial/			
Working Dir	ectory	C:/Users/SO FAM/Deskto	op/BioinforMatikz	-master/Bi	oinforMatikz-maste	r/Sat Aug 1	5 20201	01632
Load Query	Sequence							
						E	Browse	
NNQLATAFTT LAATAAGTDI	ANWSPVPSVDGKVLPK	GGFSVMTHLASPLSKGLFAKA SIKATFVAGENNKVPLVNGSN ATPIFMYEFRDRTAIPSIGRNTI TFETDHKCNTAWTSLTF	QDEWSYFVASREL	VAGPLTA	AQYPSYLQTSLGLPPS	SLATVYPLT	DYGTNTA	QQP
	ate Structures					Comp	are selec	ted
		PDB Name	Chains Pres	sent	Heteroatoms P		are selec	ted
	emplate	PDB Name 1c7i.pdb	Chains Pres	sent	Heteroatoms P CA		are selec	ted
	emplate Serial Number						are selec	ted
	emplate Serial Number	1c7i.pđb	A		CA		are selec	ted
	Serial Number	lc7i.pdb lc7j.pdb	A		CA K		are selec	ted
	Serial Number	lc7i.pdb lc7j.pdb lqe3.pdb	A A A		CA K SO4		are selec	ted
	Serial Number	lc7i.pdb lc7j.pdb lqe3.pdb	A A A		CA K SO4		are selec	ted
	Serial Number	lc7i.pdb lc7j.pdb lqe3.pdb	A A A		CA K SO4		are selec	ted
	Serial Number	lc7i.pdb lc7j.pdb lqe3.pdb	A A A		CA K SO4		are selec	ted

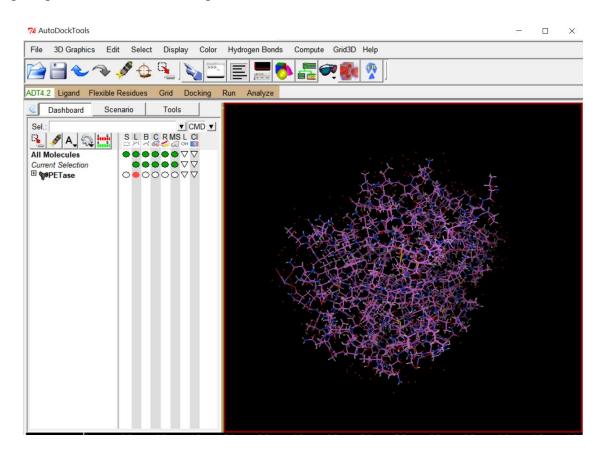
4. Choose the structure with the lowest discrete optimized protein energy (DOPE) as the best comparative model

>> Summary of successfully	produced models	:	GA341 score
Filename	molpdf	DOPE score	
query.B99990001.pdb	19438.27539	-54708.65625	1.00000
query.B99990002.pdb	19325.74805	-54823.97266	1.00000
query.B99990003.pdb	19504.75391	-54348.01562	1.00000
query.B99990004.pdb	19814.24805	-54048.32031	1.00000
query.B99990005.pdb	19395.14844	-54562.69141	1.00000

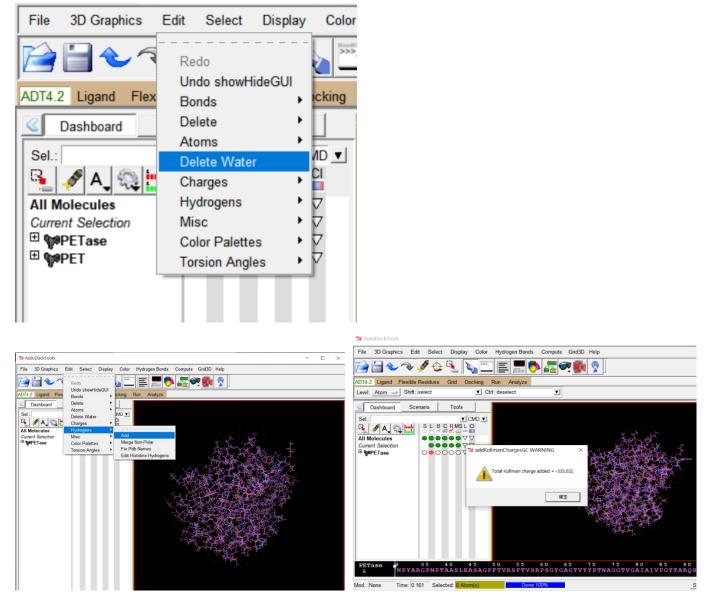
5. The pdb files of protein 3D-structures are ready for docking simulations

AutoDock Tools

Purpose

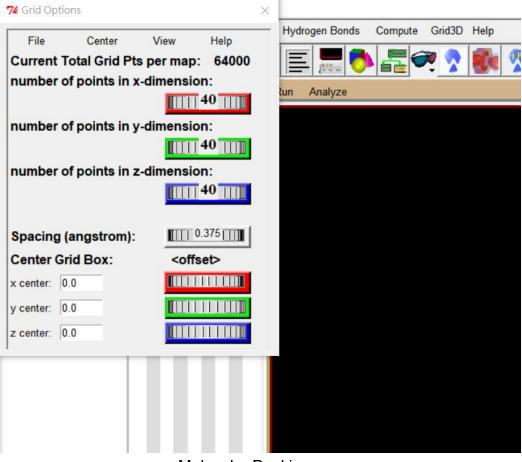

• To perform molecular docking and evaluate the accuracy in terms of actual number binding amino residues

Computational Configuration Requirement


• Windows 8 / 10

Protein Preparation

1. Drag the protein molecule and drop it in the tool


- 2. Delete all the water molecules that may interfere with the docking, and add polar hydrogens and Kollman Charges.
- 74 Python Molecule Viewer

Ligand Preparation

3. Input the ligand primarily obtained from ChemDraw3D into the AutoDock Tools

4. Determine the position where docking happens based on the docking site of the target, and then prepare a grid centered at the binding site

Molecular Docking

5. Prepare a config file with grid parameters

```
receptor = pueA.pdbqt
ligand = pur_tetramer.pdbqt
center_x = 4.953
center_y = 0.175
center_z = 23.559
size_x = 40
size_y = 40
size_z = 40
energy_range = 4
exhaustiveness = 8
```

Fig. 2 : A config file to indicate the position of grid box where docking takes place

6. Input the following command to Autodock Vina to perform molecular simulation.

C:\Users\SAMSUNG\Desktop\Docking>"C:\Program Files (x86)\The Scripps Research Institute\Vina\vina.exe" -- receptor PueA.pdbqt --ligand pur_tetramer.pdbqt --config config.txt --log log.txt --out output.pdbqt

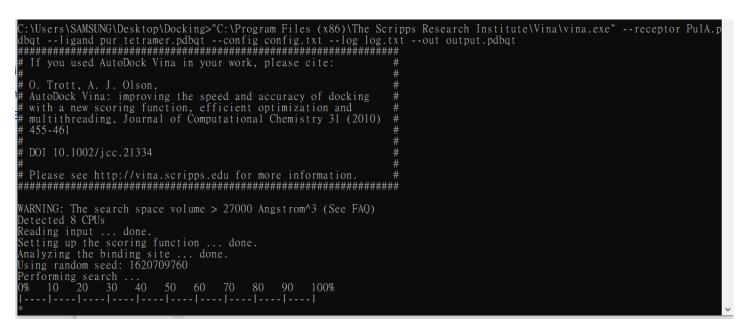


Fig. 3 : The progress bar indicates the program starts docking

Swissdock

Purpose

• To perform molecular docking and evaluate the accuracy in terms of actual number binding amino residues

- 1. Access the Swissdock server with the link : <u>http://www.swissdock.ch/docking</u>
- 2. Upload the files of protein and ligand

Swiss Institute of Bioinformatics	f	Swiss
Home	Target Database	Submit Docking
	Target selection	
	Search for targets:	
ie PDF	3 code, protein name, sequenc	e or URI
	f upload file (max 5MB)	>
	Ligand selection	
	Search for ligands:	
in 71NO AO ligand a		Gearch
ie. ZINC AC, ligano r	o upload file (max 5MB)	> or sidechains), or ORL

3. Input the job name and email address to receive notification upon the docking job is finished

Target selection	
Search for targets:	
Search	Y
ie. PDB code, protein name, sequence, or URL	P
or upload file (max 5MB)	d
Ligand solastion	N
Ligand selection	
Search for ligands:	Υ
Search	
ie. ZINC AC, ligand name or category (like scaffolds or sidechains), or URL	
or upload file (max 5MB)	
Description	
Job name (required):	
E-mail address (optional):)
Show extra parameters	
Start Docking	

PatchDock

Purpose

• To perform molecular docking and evaluate the accuracy in terms of actual number binding amino residues

- 1. Access the PatchDock server with the link : <u>https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php</u>
- 2. Upload the files of protein (as receptor molecule) and ligand

Molecular Docking Algorith	n Based on Shape Complementari	ity Principles	
[About PatchDock] [Web Serve	r] [Download] [Help] [FAQ] [Reference	ces]	
	erloaded, please wait patiently ar d ligand molecules or upload files in P	and the second se	
Receptor Molecule:		(PDB:chainId e.g. 2kai:AB) or upload file:	Choose File No file chosen
Ligand Molecule:		(PDB:chainId e.g. 2kai:I) or upload file:	Choose File No file chosen
e-mail address:		(the results are sent to this address)	
Clustering RMSD:	4.0		
Complex Type:	Default 🗸	Be sure to give receptor and ligand in the	corresponding order!

- 3. Input the email address to know the progress of docking simulations
- 4. Submit the docking action

DockThor

Purpose

• To carry out molecular docking and evaluate the accuracy in terms of actual number binding amino residues

- 1. Access the DockThor server with the link : <u>https://dockthor.lncc.br/v2/</u>
- 2. Upload the files of protein and ligand but ignore the cofactors

lome	Docking	References	About	Support 🗸			•)
	Protein	Cofac	tors	Ligand	Docking	Results	
							_
G			rotoin	filo			
(1		ad your p		file			
(1	Uploc + Add file			file			
	+ Add file			file			

3. Perform blind docking without setting up any defined position of grid box

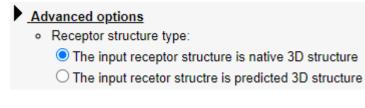
Home	Docking Referen	ces About	Support 🗸			•
	Protein	Cofo	actors	Ligand	Docking	Results
1	Check your	docking i	input files			
	Protein (1)					+
	Ligand (1)					+
						+
(2)	Cofactor (0) Define the b	indina sit	te o			•
2	Define the b	it version of Dock	Thor (released on Ap		al size of the grid box instead of X = 20, Y = 20 and Z = 20 instead	the half value on each dimension.
2	Define the b	it version of Dock	Thor (released on Ap out grid size for the do			the half value on each dimension.
2	Define the b	It version of Dock	Thor (released on Ap out grid size for the do			the half value on each dimension.
2	Define the b Attention: the currer For exa	It version of Dock	Thor (released on Ap out grid size for the do	ocking with the test files are		the half value on each dimension. d of 10 Å on each axis.
2	Define the b Attention: the currer For exa User Defined Grid center:	t version of Dock mple, now the inp Blind Doc	Thor (released on Ap out grid size for the do	ocking with the test files are Grid size:	X = 20, Y = 20 and Z = 20 instead	the half value on each dimension. 3 of 10 Å on each axis. Discretization:

4. Input the email address to keep an eye on the progress of the job and then onclick 'Dock'

Job name:	
E-mail:	
	+
Subscribe DockThor e-Newsletters	
Accept terms of use	

EDock

Purpose


• To carry out molecular docking and evaluate the accuracy in terms of actual number binding amino residues

Procedures

- 1. Access the EDock server with the link: <u>https://zhanglab.ccmb.med.umich.edu/EDock/</u>
- 2. Upload the files of protein and ligand

EDock Online
Input your receptor PDB structure from your computer:
(either structure in <u>PDB format</u> is acceptable or <u>Example input)</u>
Choose File No file chosen
Input your ligand MOL2 structure from your computer:
(either structure in <u>MOL2 format</u> is acceptable or <u>Example input</u>)
Choose File No file chosen

- 3. Input the email address to know the progress of the job Email: (mandatory, where results will be sent to.)
- 4. Select 'The input receptor structure is native 3D structure'

5. Click 'Submit'

Submit Clear Form

LIGPLOT**

Purpose

- To generate schematic diagrams of protein-ligand interaction in pdb file format
- The binding site of the enzyme and substrate can then be further determined

Computational Configuration Requirement

- Java
- Windows 8 / 10

Procedures

- 1. Import the protein-ligand complex in LIGPLOT in pdb format
- 2. Select 'UNK' mode to run the program
- 3. Obtain the schematic diagram of the complex showing hydrogen-bonding and hydrophobic interaction between protein molecule and ligand

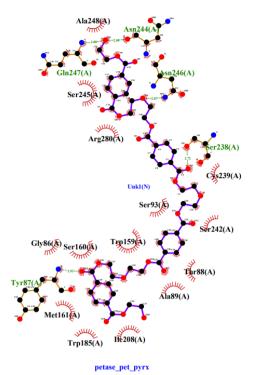
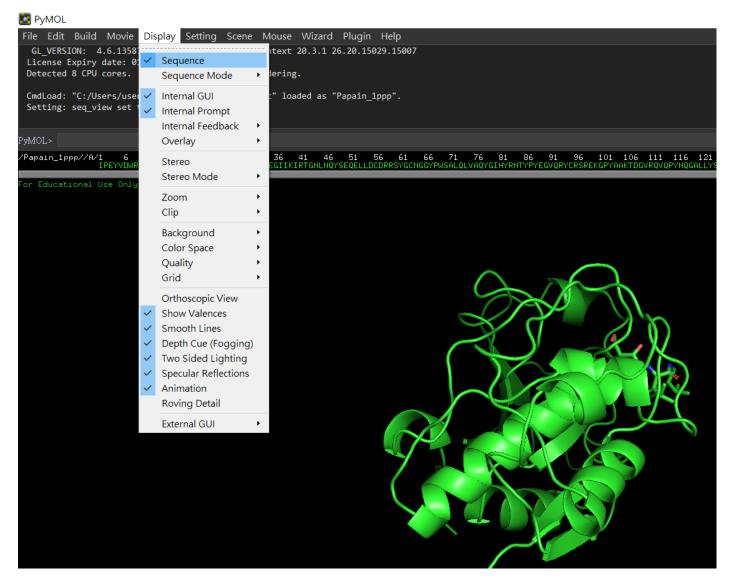
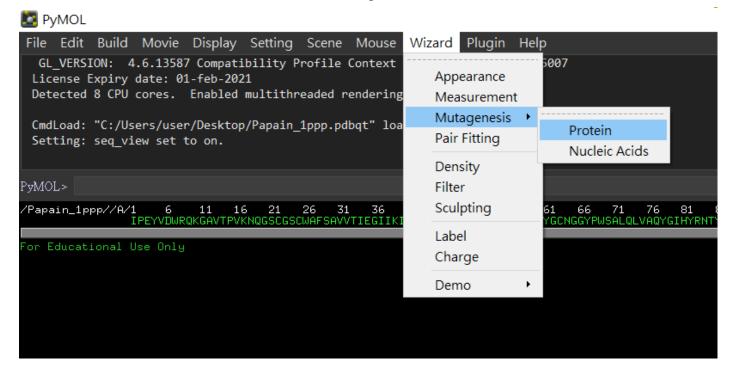


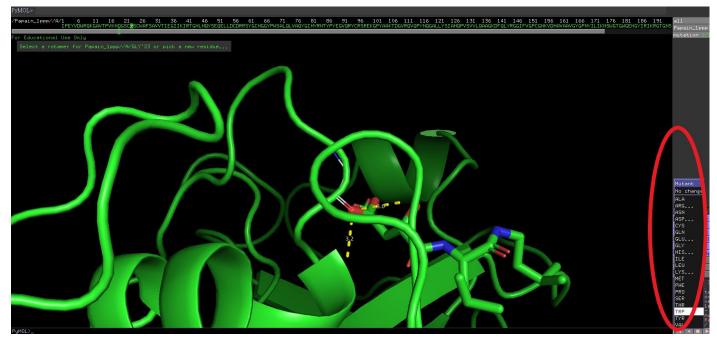
Fig. 4 : Schematic diagram of PETase-PET interaction. It shows hydrophobic interaction (red) and hydrogen bonding formation (green) at specific location

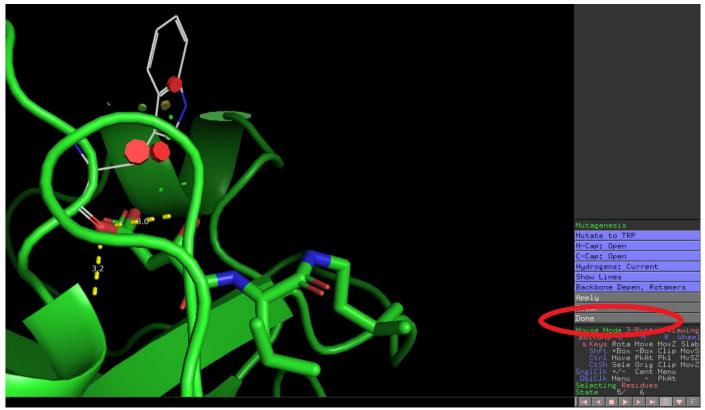

**Reference : Sanket Bapat's Youtube channel

PyMOL Visualization Tool**


Purpose

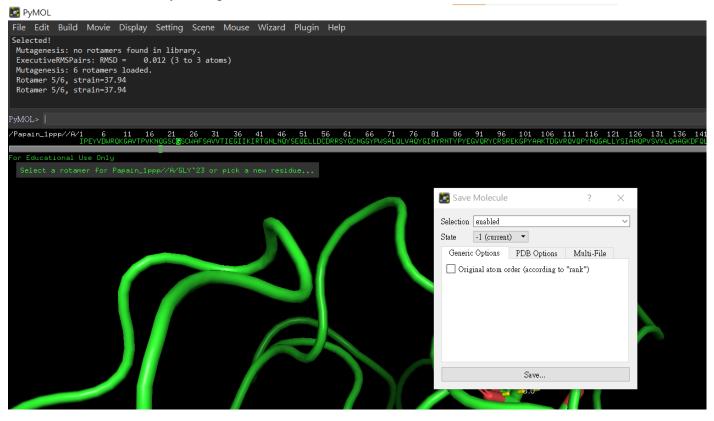
- To perform mutagenesis
- To show the crystal structures of enzyme


- 1. Input the protein of interest into PyMOL
- 2. Use the 'sequence display' feature to view its amino acid sequence


3. Locate an amino acid residue on the conserved region

4. Alter one amino acid residue to non-polar nature (e.g. Tryptophan) in order to enhance affinity

5. Onclick 'done'



6. Export the molecule

Pymol

ile Edit Build Movie	Display Setting Scene Mouse Wizard Plugin Help
New PyMOL Window	
Open Open Recent Get PDB	0.012 (3 to 3 atoms) aded.
Save Session Save Session As	
Export Molecule	16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 VTPVKNQGSCGSCWAFSAVVTIEGIIKIRTGNLNQYSEQELLDCDRRSYGCNGGYPWSALQLVAQYGIHYRNTYPYE
Export Map Export Alignment Export Image As Export Movie As	in_1ppp//A/GLY`23 or pick a new residue
Log File Run Script Working Directory	
Edit pymolrc	
Reinitialize Quit	

7. Save the mutant enzyme in pdb format

