DNA Replication-2

---Extensions

By Nanjing_NFLS

https://2019.igem.org/Team:T

Origin (DNA replication start site)

nkey vacuolar s 40

E.coli

brewer's yeast

65 bp

A fragment of DNA that starts from a single DNA replication starting point and is eventually completed by a replication fork starting from that starting point.

The individual units of DNA in which replication occurs are called replicons.

Peking 2019 iGEM

In *E. coli*, genome replication initiates at one single locus, oriC. Formation of DnaA protein filaments on DnaA boxes within oriC accurately regulates replication-bubble opening and subsequent helicase loading [3]. Here, we managed to block DnaA binding, mainly based on competition of CRISPR/dCas9 to the arrays of DnaA boxes (Apart from this, we also explored the effect of blocking other regions) [4]. See our Design page for more detailed introduction.

Peking 2019 iGEM

Peking 2019 iGEM

End of DNA replication - prokaryotes

more complex and more interesting \vee

The termination of replication of prokaryotes is prone to various kinds of entanglement due to their ring-like nature, thus requiring topoisomerases to adjust their conformation.

End of DNA replication - eukaryote

cyclic DNA

The "end cryptic problem" of linked DNA.

Extended knowledge: telomeres

Telomere: A repetitive characteristic sequence at the end of a chromosod Used to protect chromosome ends shortening due to duplication, from degradation by various enzymes, a from integrating with each other.

Extended knowledge: Okazaki clips

THANKS.