# **Protocol**



## Lyophilization

## Introduction

Lyophilization (also known as freeze-drying) is a technique used in cellular biosensors to dehydrate a sample without applying extreme heat that might destroy it. In this case, the sample will be composed of E. coli cells that will be kept in this lyophilized state for a long time, facilitating storage and transport for a long time. This protocol is mostly derived from Prévéral et al, 2017, changing the machine used for the freeze-drying and the time spent lyophilizing

#### **Materials**

- LB media
- Bacterial E. coli strain
- Sucrose
- Machinery
  - o Incubator with shaker.
  - o -80°C freezer
  - o SpeedVac™ SPD1030/2030 (or any other freeze-drying device available)
  - o Spectrophotometer

#### **Procedure**

## **Preparation of the materials**

Prepare sterile LB media and sterile 12% sucrose LB media. Be careful if you decide to autoclave the sucrose solution, given that it tends to degrade and caramelized at high temperatures. Filtration is advised.

#### **Growth of the cells**

Grow desired cells overnight at 37°C in LB media under shaking.

The next day, make a dilution 1/100 in fresh LB media until OD600 = 0.3, at the start of the exponential phase.

Pellet the cells by centrifuging 5 minutes at 5000 rpms, and resuspended to an OD600 = 0.5 in LB + sucrose 12%.

Aliquot the cells by adding 500 µL in 2 mL eppendorf tubes then freeze them at -80°C.

### Lyophilization

The next day, lyophilize for 6 hours in a SpeedVac Vacuum Concentrator. The lyophilized cells were stored for a week at 4 °C before their use, but according to the literature, they should stay alive and maintain protein induction after a year of storage at that temperature.

#### References

Prévéral, S., Brutesco, C., Descamps, E. C., Escoffier, C., Pignol, D., Ginet, N., & Garcia, D. (2017). A bioluminescent arsenite biosensor designed for inline water analyzer. Environmental Science and Pollution Research, 24(1), 25-32.