## ABTS ASSAY

General:


- 2,2'-Azino-di(3-ethylbenzthiazolin-6-sulfonacid)
- CAS: 28752-68-3; 30931-67-0 (Diammonium salt)


Fig. 1: Absorption spectrum of ABTS ${ }^{+1}$

## Conditions of paper ${ }^{2}:$

- Paper on BaLac
- $\quad \theta$ variable
- $c=1 \mathrm{mM}$ ABTS
- Buffer: $c=100 \mathrm{mM}$ Citrat-Phosphat; $\mathrm{pH}=4.0$
- Air-saturated
- Spectroscopic parameter: $\lambda=420 \mathrm{~nm} ; \varepsilon_{420 \mathrm{~nm}}=36000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$


## Conditions of paper ${ }^{3}:$

- Paper on marLac
- Spectroscopic parameter: See above
- ABTS concentration unknown
- Buffer: 40 mM Britton-Robinson buffer; $\mathrm{pH}=7.0$
- $\theta=60^{\circ} \mathrm{C}$
- Rest: standard conditions


## Preparing the buffers

$0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ needed
0.1 M Citric acid needed

For the basic solution with a volume of 200 ml , use $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ with a molecular weight of

## $177.99 \mathrm{~g} / \mathrm{mol}$

Formula: $m[g]=M\left[\frac{g}{m o l}\right] * c[M] * V[l]$
Calculation: $177.99 \frac{g}{\mathrm{~mol}} * 0.2 \mathrm{M} * 0.20 \mathrm{l}=7.119 \mathrm{~g}$ for a 0.2 M solution
Weigh the calculated amount of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ and fill the bottle to 200 ml with ultra filtrated (UF) $\mathrm{H}_{2} \mathrm{O}$.

For the acidic solution with a volume of 200 ml , use Citric acid monohydrate with a molecular weight of $210.14 \mathrm{~g} / \mathrm{mol}$.
Calculation: $210.14 \frac{\mathrm{~g}}{\mathrm{~mol}} * 0.1 \mathrm{M} * 0.25 \mathrm{l}=4.203 \mathrm{~g}$ per 200 ml for a 0.1 M solution
Weigh the calculated amount of Citric acid monohydrate and fill the bottle to 200 ml with UF $\mathrm{H}_{2} \mathrm{O}$.
Mix both solutions until they are clear.

$$
\mathrm{V}=1000 \mathrm{~mL} \text { (Multiplied all values by } 50 \text { from } 20 \mathrm{ml} \text { values) }
$$

Tab. 1: Mixing ratios to achieve the desired pH values

| $\mathbf{p H}$ | $\mathbf{0 . 2 ~ \mathbf { M ~ N a }} \mathbf{2}_{\mathbf{2}} \mathbf{H O}_{\mathbf{4}}$ in $\mathbf{~ m l}$ | $\mathbf{0 . 1} \mathbf{M}$ Citric acid in $\mathbf{~ m l}$ |
| :--- | :--- | :--- |
| 4.0 | 385.5 | 614.5 |
| 5.0 | 515 | 485 |
| 7.0 | 823.5 | 176.5 |

## Preparing ABTS

ABTS $\rightarrow \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{4}-\left(\mathrm{NH}_{4}\right)_{2}-\mathrm{Mr} 548.7$
$548.7 \mathrm{~g}=1 \mathrm{~mol}$
$54.87 \mathrm{~g}=100 \mathrm{mmol}$
$c=\frac{n}{V}$
$c=\frac{54.87}{1000}$
$c=0.05487 \mathrm{~g} / \mathrm{ml}$

Weigh 0.05487 g out on a fine scale. If you can't weigh the exact amount, calculate the amount of water in which you want to dilute it with the following formula:

$$
\text { Amount of Water to add }=\frac{\text { actual weighted }}{c}
$$

Add the amount of water you calculated and mix it. ABTS Stock solution is ready and should be stored cooled and protected from light.

The final concentration per each well will be 0.25 mM .

## Dilution of enzyme

$0.5 \mathrm{U} / \mathrm{mg}$ enzyme written on the bottle of Trametes versicolor from Sigma-Aldrich.
$1 \mathrm{u}=1 \mu \mathrm{~mol} / \mathrm{min}$
We need $10 \mathrm{U} / \mathrm{ml}$ as concentration for the enzyme stock.
Formula: Concentration of the enzyme $=\frac{\text { Want }}{\text { Have }} *$ endvolume
Calculation: $\frac{10 \mathrm{U} / \mathrm{ml}}{0.5 \mathrm{U} / \mathrm{mg}} * 1 \mathrm{ml}=20 \mathrm{mg} / \mathrm{ml}$
$\frac{20 \mathrm{mg} / \mathrm{ml}}{100}=\frac{0.2 \mathrm{mg}}{\mathrm{ml}} \rightarrow 200 \mu \mathrm{~g} / \mathrm{ml}$ (first dilution we want)
To do a dilution series, calculate for the concentrations you want the amount of enzyme from the stock solution you need.

We decided to measure the following enzyme concentrations:

Tab. 2: Concentrations of $T$. versicolor in $\mu \mathrm{g} / \mathrm{ml}$ and $\mu \mathrm{M}$

| Concentration of $T$. versicolor $[\mu \mathrm{g} / \mathrm{ml}]$ | Concentration of $T$. versicolor $[\mu \mathrm{M}]$ |
| :--- | :--- |
| 200 | 3570 |
| 100 | 1790 |
| 50 | 890 |
| 20 | 360 |
| 15 | 270 |
| 10 | 180 |
| 2 | 40 |

## Working dilution

Formula: dilution factor $*$ dilution concentration to use $=$ Volume to use Calculation examples:
Concentration $2000 \mu \mathrm{~g} / \mathrm{ml}: 0.1 * 200=20 \mu \mathrm{l}$ from stock

Concentration $1000 \mu \mathrm{~g} / \mathrm{ml}: 0.5 * 200=100 \mu$ l from 200
And so on.
The final dilution of $200 \mu \mathrm{~g} / \mathrm{ml}$ was reached in the well where the amount was diluted by a factor of 10 , so the final volume matches the table below. $5 \mu$ l of working dilution was added to each well to achieve the final concentration. The calculation is explained in more detail below the table.
Tab. 3: Calculations to achieve the final concentrations in the wells

| Concentration $[\mu \mathrm{g} / \mathrm{ml}]$ <br> enzyme in the well | Working dilution |
| :--- | :--- |
| 200 | 200 total volume $=20 \mu \mathrm{l}$ stock enzyme $+180 \mu \mathrm{l}$ buffer |
| 100 | 200 total volume $=100 \mu \mathrm{l} 200 \mu \mathrm{~g} / \mathrm{ml}$ enzyme $+100 \mu \mathrm{l}$ buffer |
| 50 | 200 total volume $=100 \mu \mathrm{l} 100 \mu \mathrm{~g} / \mathrm{ml}$ enzyme $+100 \mu \mathrm{l}$ buffer |
| 20 | 200 total volume $=80 \mu \mathrm{l} 50 \mu \mathrm{~g} / \mathrm{ml}$ enzyme $+120 \mu \mathrm{l}$ buffer |
| 10 | 100 total volume $=50 \mu \mathrm{l} 20 \mu \mathrm{~g} / \mathrm{ml}$ enzyme $+50 \mu \mathrm{l}$ buffer |
| 2 | 100 total volume $=20 \mu \mathrm{l} 20 \mu \mathrm{~g} / \mathrm{ml}$ enzyme $+80 \mu \mathrm{l}$ buffer |

The volume of each well in a 96 well plate is $200 \mu \mathrm{l}$.
And because the enzyme converts $0.5 \mu \mathrm{~mol} / \mathrm{min}$ (because $0.5 \mathrm{U} / \mathrm{ml}$ and $1 \mathrm{U}=1 \mu \mathrm{~mol} / \mathrm{min}$ ) there should be at least $0.5 \mu \mathrm{l}$ enzyme in each well, but because pipetting $0.5 \mu \mathrm{l}$ is not very accurate, you need to adjust the dilutions with buffer and increase to an amount to $5 \mu \mathrm{l}$ enzyme for each well.
$\rightarrow$ So, in each well there are $5 \mu$ l of the enzyme of each concentration $+5 \mu \mathrm{I}$ ABTS +190 $\mu$ l of buffer!

Tab. 4: Example how the wells of the 96 well plates were filled

| Column | Well | 3 | 4 |
| :---: | :---: | :---: | :---: |
|  | Enzyme Concentration | $0 \mu \mathrm{~g} / \mathrm{ml}$ | $2 \mu \mathrm{~g} / \mathrm{ml}$ |
|  | pH |  |  |
| a | 4 | $5 \mu \mathrm{l}$ ABTS + $195 \mu \mathrm{l}$ buffer | $5 \mu \mathrm{l}$ enzyme $2 \mu \mathrm{~g} / \mathrm{ml}+5 \mu \mathrm{l}$ ABTS $+190 \mu \mathrm{l}$ buffer |
| b | 4 | $5 \mu \mathrm{l}$ ABTS $+195 \mu \mathrm{l}$ buffer | $5 \mu \mathrm{l}$ enzyme $2 \mu \mathrm{~g} / \mathrm{ml}+5 \mu \mathrm{l}$ ABTS $+190 \mu \mathrm{l}$ buffer |
| c | ABTS Control | $5 \mu \mathrm{l}$ buffer $+195 \mu \mathrm{l}$ buffer | $5 \mu \mathrm{l}$ enzyme $2 \mu \mathrm{~g} / \mathrm{ml}+195 \mu \mathrm{l}$ buffer |
| d | 5 | $5 \mu \mathrm{l}$ ABTS $+195 \mu \mathrm{l}$ buffer | $5 \mu \mathrm{l}$ enzyme $2 \mu \mathrm{~g} / \mathrm{ml}+5 \mu \mathrm{l}$ ABTS $+190 \mu \mathrm{l}$ buffer |
| e | 5 | $5 \mu \mathrm{l}$ ABTS $+195 \mu \mathrm{l}$ buffer | $5 \mu \mathrm{l}$ enzyme $2 \mu \mathrm{~g} / \mathrm{ml}+5 \mu \mathrm{l}$ ABTS $+190 \mu \mathrm{l}$ buffer |
| f | ABTS Control | $5 \mu \mathrm{l}$ buffer $+195 \mu \mathrm{l}$ buffer | $5 \mu \mathrm{l}$ enzyme $2 \mu \mathrm{~g} / \mathrm{ml}+195 \mu \mathrm{l}$ buffer |
| g | 7 | $5 \mu \mathrm{l}$ ABTS + $195 \mu \mathrm{l}$ buffer | $5 \mu \mathrm{l}$ enzyme $2 \mu \mathrm{~g} / \mathrm{ml}+5 \mu \mathrm{l}$ ABTS $+190 \mu \mathrm{l}$ buffer |
| h | 7 | $5 \mu \mathrm{l}$ ABTS $+195 \mu \mathrm{l}$ buffer | $5 \mu \mathrm{l}$ enzyme $2 \mu \mathrm{~g} / \mathrm{ml}+5 \mu \mathrm{l}$ ABTS $+190 \mu \mathrm{l}$ buffer |

Caution! Make sure to keep enzyme and ABTS separated until you are performing the assay!
Once ready, mix ABTS into each well according to scheme using a multichannel pipette, mix each well thoroughly, and place plate in plate reader at settings 420 nm at $30^{\circ} \mathrm{C}$. Allow to run for 4 hours and photograph well plate after completion.

## References:

(1) Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine 1999. https://doi.org/10.1016/S0891-5849(98)00315-3.
(2) Scheiblbrandner, S.; Breslmayr, E.; Csarman, F.; Paukner, R.; Führer, J.; Herzog, P. L.; Shleev, S. V.; Osipov, E. M.; Tikhonova, T. V.; Popov, V. O.; Haltrich, D.; Ludwig, R.; Kittl, R. Evolving Stability and PH-Dependent Activity of the High Redox Potential Botrytis Aclada Laccase for Enzymatic Fuel Cells. Scientific Reports 2017. https://doi.org/10.1038/s41598-017-13734-0.
(3) Yang, Q.; Zhang, M.; Zhang, M.; Wang, C.; Liu, Y.; Fan, X.; Li, H. Characterization of a Novel, Cold-Adapted, and Thermostable Laccase-like Enzyme with High Tolerance for Organic Solvents and Salt and Potent Dye Decolorization Ability, Derived from a Marine Metagenomic Library. Frontiers in Microbiology 2018. https://doi.org/10.3389/fmicb.2018.02998.

