Getting started

Week 1 iGEM 2020 Summer webinars

Alexis Casas

Where do you start? Where do you end?

Team Marburg 2018, finalist presentation

Team Makere 2018, poster presentation

Team Pasteur Paris 2018

Team Valencia UPV 2016

Where do you start?

- What are you solving? What are you engineering?
- What should you design in-silico (on your computer)?
- What are you going to be doing in the lab and why?
- Choice of organism?
- How does Human Practices influence your work in the lab?

Where do you start?

• Choice of organism?

Where do you start?

- What are you solving? What are you engineering?
- What should you design in-silico (on your computer) ?
- What are you going to be doing in the lab and why?
- Choice of organism?
- How does Human Practices influence your work in the lab?
 - → Integrated Human Practices

- DNA circuit for protein expression / production
- DNA circuit as a sensor
- Biotransformation
- Data storage in DNA

- DNA circuit for protein expression / production
- DNA circuit as a sensor
- Biotransformation
- Data storage in DNA

Example: Spider silk protein production

Team GreatBay SZ 2019

- DNA circuit for protein expression / production
- DNA circuit as a sensor
- Biotransformation
- Data storage in DNA Signal In (small molecules)

 Signal Out (protein)

 Example: Biosensor to detect fruit ripeness
 Team Sydney 2016

- DNA circuit for protein expression / production
- DNA circuit as a sensor
- Biotransformation

- DNA circuit for protein expression / production
- DNA circuit as a sensor
- Biotransformation
- Data storage in DNA

Example: DNA storage and encryption systems Team Edinburgh 2016, Team Groningen 2016

Resources from iGEM 2020 Opening Week-end

- Planning and Designing an iGEM Project
 - https://youtube.com/wach?v=39nLyxYun38

- Cloning and Assembly Plans
 - https://www.youtube.com/watch?v=f0Q1xeX2xzA

- Modelling for Synthetic Biology
 - https://www.youtube.com/watch?v=z7isDdt0IS0

Databases

DNA design tools

Databases

- Find proteins
- Find genes
- Find other parts (promoters, RBS etc..

Databases

- Find proteins
- Find genes
- Find other parts (promoters, RBS etc..

Next talk: How to utilize databases effectively - Ian Schlander

- Getting your DNA sequences
 - O Where to search?
 - How to use and do lookups in different databases?
- Getting your Genes
- Designing your Transcriptional Unit (TU)
 - Choosing the promoter
 - Choosing the RBS
 - Putting the CDS together
 - Choosing the terminator
- Designing your Device (or Circuit)
 - Backbone (=Vector)
 - Resistance

- Getting your DNA sequences
 - O Where to search?
 - How to use and do lookups in different databases?
- Getting your Genes
- Designing your Transcriptional Unit (TU)
 - on Next talk: **How to utilize databases effectively** Ian Schlander
 - Choosing the RDS
 - Putting the CDS together
 - Choosing the terminator
- Designing your Device (or Circuit)
 - Backbone (=Vector)
 - Resistance

- Getting your DNA sequences
 - O Where to search?
 - O How to use and do lookups in different databases ?
- Getting your Genes
- Designing your Transcriptional Unit (TU)
 - Choosing the promoter
 - Choosing the RBS
 - Putting the CDS together
 - Choosing the terminator
- Designing your Device (or Circuit)
 - Backbone (=Vector)
 - Resistance++

- Getting your DNA sequences
 - Where to search?
 - O How to use and do lookups in different databases ?
- Getting your Genes
- Designing your Transcriptional Unit (TU)
 - Choosing the promoter
 - Choosing the RBS
 - Putting the CDS together
 - Choosing the terminator
- Designing your Device (or Circuit)
 - Backbone (=Vector)
 - Resistance

Next talk: Cloning Strategy - Sonja Billerbeck

- Physically getting the parts and the genes
- Steps to get your DNA from existing plasmid
- Cloning to get many copies of your gene
- Assembling the DNA together

- Physically getting the parts and the genes
 - DNA Synthesis
 - Get it from plasmid DNA
 - Genomic DNA extraction from organisms
- Steps to get your DNA from existing plasmid
- Cloning to get many copies of your gene
 - What to consider to start cloning
 - Choosing a cloning vector
- Assembling the DNA together

- Physically getting the parts and the genes
 - DNA Synthesis
 - Get it from plasmid DNA
 - Genomic DNA extraction from organisms
- Steps to get your DNA from existing plasmid

Week 2 - DNA parts and Basic Molecular Biology

- Cloning to get many copies of your gene
 - What to consider to start cloning
 - Choosing a cloning vector
- Assembling the DNA together

- Physically getting the parts and the genes
 - DNA Synthesis
 - Get it from plasmid DNA
 - Genomic DNA extraction from organisms
- Steps to get your DNA from existing plasmid
- Cloning to get many copies of your gene
 - What to consider to start cloning
 - Choosing a cloning vector

Cloning Strategy - Sonja Billerbeck

- Physically getting the parts and the genes
 - DNA Synthesis
 - Get it from plasmid DNA
 - Genomic DNA extraction from organisms
- Steps to get your DNA from existing plasmid
- Cloning to get many copies of your gene
 - What to consider to start cloning
 - Choosing a cloning vector
- Assembling the DNA together

Week 3 - **DNA assembly techniques**

Expressing / Transformation

- Expression vector
- Cloning in the host organism (=chassis)

Expressing / Transformation

Expression vector

Expressing / Transformation

Expression vector

Cloning in the host organism (=chassis)

Protein production

Week 2 - DNA parts and Basic Molecular Biology

Week 6 - Transforming and Sequencing

Week 8 - Protein characterization

Measuring

- What do you measure?
- Designing your measurement assays

Week 5 - Quantifying fluorescence and cell count with plate readers

Troubleshooting

- Verify at each step
 - Gels electrophoresis
 - Sequencing
 - Demos (simulate troubleshooting steps) of software
 - Troubleshooting guides in products (ex: miniprep guide, vendor websites etc..)
 - Other assays
- Discuss with your mentor / PI
- iGEM Measurement Committee Office Hours
 - Biweekly office hours to answer questions
 - Every other Tuesday at 3am EDT and 1pm EDT starting June 9.

Troubleshooting

- Verify at each step
 - Gels
 - Sequencing
 - Demos (simulate troubleshooting steps) of software
 - Troubleshooting guides in products (ex: miniprep guide, vendor websites etc..)
 - Other assays
- Discuss with your mentor / PI
- iGEM Measurement Committee Office Hours
 - Biweekly office hours to answer questions
 - Every other Tuesday at 3am EDT and 1pm EDT starting June 9.

Next Office Hours: Tuesday 23rd of June 2020

Future Webinars & Events

Thank you

Future Webinars & Events

The next two sessions in this webinar:

Getting started - Alexis Casas

How to utilize databases effectively - Ian Schlander

Cloning Strategy - Sonja Billerbeck

How to Use Biological Databases and Tools for Beginners

Measurement Committee Ian Schlander (NREL)

Biological Databases Covered Today

- BioCyc Sequenced genomes with predicted metabolic pathways
- 2. BRENDA Enzyme database
- 3. UniProt Protein sequences and functional information
- 4. PDB Protein structural data
- 5. NCBI Biomedical and genomic information
- GenBank DNA sequences and their protein translations

Tools Demonstrated Today

- NCBI: BLAST Aligning homologous sequences for finding a protein of interest
- 2. **GenBank:** RefSeq How to find a DNA sequence of your protein in the genome of an organism
- **3. Clustal Omega** Multiple sequence alignments and constructing phylogenetic trees
- **4. ExPasy** Bioinformatics resource portal

By the end you will be able to...

- Understand what databases are available and how to navigate the database
- Use database information to decide on sequences of proteins from different organisms that can be useful for their project
- 3. Use bioinformatic tools in conjunction with the database to analyze and visualize these proteins and their pathways to eventually decide which one to use.

PROTEIN DATA BANK

NCBI

EXPASy Bioinformatics Resource Portal

Time for you to practice!

- "Database & Bioinformatic Tools for Beginners Practicum"
 - Download the document available on our webpage: https://2020.igem.org/Measurement/Webinars
- Contact <u>measurement@igem.org</u> and request **lan** Schlander for further questions ©
- Next is a presentation by Sonja Billerbeck to discuss Cloning Strategies!

Cloning Strategy

Sonja Billerbeck

Assistant Professor University of Groningen Netherlands

Cloning Strategy

A cloning strategy needs three major considerations

3. Troubleshoot the circuit performance: Flexible and *modular design and assembly* strategy of the backbone and the circuits

A cloning strategy needs three major considerations

It is important to think of a cloning strategy during the design phase

- Cloning is an essential component of the built phase
- A cloning strategy enables the improvement phase
- The cloning strategy depends on the design and test phase

It is important to think of a cloning strategy during the design phase

- Cloning is an essential components of the built phase
- A cloning stagy enables the improvement phase
- The cloning strategy depends on the design and test phase

The cloning strategy is developed and tested "in silico"

Plan, visualize, and document DNA cloning experiments.

We offer Webinars on

SnapGene

Cloning strategy question 1: Host organism

Host organism: Backbone/vector collections

Bacteria

p**SEVA** collection

Interchangeable

Selection markers Origin of replication Multiple cloning site for cargo

Yeast

pRS series of plasmids

Interchangeable

Selection markers Origin of replication Multiple cloning site for cargo

Addgene #11258 pRS410 Addgene #11256 pRS418 Addgene #11256 pRS420

Yeast MoClo Toolkit (Dueber Lab)
 Make pRS series via golden gate assembly

Addgene Kit #1000000061

Backbone collections: Change copy number of plasmid

Interchangeable

Selection markers Origin of replication Multiple cloning site for cargo

Backbone collections: Add a circuit

Cloning strategy question 2: Assembly of circuits: Modularity and troubleshooting

Modularity allows for quick and cheap troubleshooting

Assembly of circuits: Assembly method

Webinars

BioBrick Assembly

 Restriction sites flank every gene fragment, allowing "parts" to be interchanged, but introduces scar sequences

Modular √

Gibson Assembly

 Exonuclease creates large overhangs for annealing fragments, allowing for more accurate assemblies

Modular ✓
Scar-less ✓

Golden Gate Assembly

 Endonuclease creates fragment-specific overhangs allowing 20+ fragments to be assembled at once in a relatively short time

Modular ✓
Scar-less ✓
Scalable ✓

Assembly of circuits: Assembly method

Webinars

BioBrick Assembly

 Restriction sites flank every gene fragment, allowing "parts" to be interchanged, but introduces scar sequences

Gibson Assembly

 Exonuclease creates large overhangs for annealing fragments, allowing for more accurate assemblies

Golden Gate Assembly

 Endonuclease creates fragment-specific overhangs allowing 20+ fragments to be assembled at once in a relatively short time

Good choice for most cloning strategies

A well-defined cloning strategy is...

...essential to run the full cycle and improve a design until it works.

Specialized webinars on:
Cloning Apps and Assembly methods