SDS-Page

For four mini-gels:

	Stacking Gel (3 %)	Separating Gel (10 %)
1.5 M Tris-HCl pH 8.8	-	5 ml
0.5 M Tris-HCl pH 6.8	2.5 ml	-
30 % Acrylamide	1.1 ml	8 ml
Water	6.1 ml	6.8 ml
20 %SDS	50 μΙ	100 μΙ
0.5 M EDTA pH 8	50 μΙ	100 μΙ
APS (100 mg/ml)	200 μΙ	200 μΙ
TEMED	15 μΙ	8 μΙ
Final	10 ml	20 ml

Work with gloves (unpolymerized acrylamide is toxic and keratin gives contaminating bands)!

- 1. Wash glass plates thoroughly with sponge and soap, rinse well with VE water and wipe with 70% ethanol. Assemble glass plates into gel pouring device.
- 2. Prepare solutions for 4x separation and 4x stacking gels in 50-ml Falcons (don't add APS and TEMED).
- 3. Add APS und TEMED to separating gel solution and mix well.
- 4. Pour gel solution between the glass plates in the pouring device and overlay with isopropanol using a Pasteur pipette. Let the gel polymerize for 45 60 min.
- 5. Decant isopropanol and rinse gels thoroughly with distilled water and remove remaining water on top of the gel with Whatman paper (avoid touching the gel while doing this!).
- 6. Add APS and TEMED to the stacking gel solution and mix well.
- 7. Pour solution onto the separating gel and slide-in combs; avoid bubbles!
- 8. Let the gel polymerize for 30 45 min.
- 9. Carefully remove combs and mark the pockets on the outer glass plate.
- 10. Assemble glass plates with gels into the running device and place it into the running chamber.
- 11. Fill-in electrode buffer into the interior chamber until the buffer level is between outer and inner glass plates; pour remaining buffer into the outer chamber.
- 12. Load the calculated volume of the samples on the gels using a 20- μ l pipette and load 3 μ l of protein marker (M). Prepare one set with the lower and one with the higher protein amount (not for screening gels).

13. Conduct electrophoresis at 120 V for ~ 60 min until the chlorophyll is just about to exit the gel; in the meanwhile, prepare Whatman paper and nitrocellulose membranes for blotting.
ger, in the meanwhile, prepare whathan paper and hitrocendiose membranes for biotting.