Protocol

PCR - Phusion™ High-Fidelity DNA Polymerase

Introduction

PCR stands for polymerase chain reaction which is a method used to amplify a specific sequence. Here follows the description of doing PCR for Thermo Fisher Phusion™ High–Fidelity DNA Polymerase.

Link to Thermo Fisher product information sheet of Phusion™ High–Fidelity DNA Polymerase and the original protocol:

https://assets.thermofisher.com/TFS-

Assets/LSG/manuals/MAN0012393_Phusion_HighFidelity_DNAPolymerase_UG.pdf

Materials

- Phusion™ High–Fidelity DNA Polymerase
- 5X Phusion™ HF Buffer
- Template DNA
- Forward Primer
- Reversed Primer
- dNTPs
- DMSO (optional if GC-rich amplicons are made)

Procedure

Preparations

- Read the following important notes (more info is found in Thermo Fishers product information sheet):
- Use 98°C for denaturation (see "Initial denaturation" on page 3 and "Denaturation" on page 3).
- The annealing rules are different from many common DNA polymerases (such as Taq DNA polymerases). Read "Primer annealing" on page 3 carefully.
- Use 15–30 s/kb for extension. Do not exceed 1 min/kb (see "Extension" on page 4).
- Use Phusion™ High–Fidelity DNA Polymerase at 0.5–1.0 U per 50 µL reaction volume. Do not exceed 2 U/50 µL (see "Enzyme" on page 3).
- Use 200 μM of each dNTP. Do not use dUTP (see "Mg2+ and dNTP" on page 3).
- Phusion[™] High–Fidelity DNA Polymerase produces blunt end DNA products.
 - 1. PCR reactions should be set on ice
 - 2. Prepare a mastermix for the appropriate number of samples to be amplified.
- 3. The Phusion™ High–Fidelity DNA Polymerase should be pipetted carefully and gently as the high glycerol content (50%) in the storage buffer may otherwise lead to pipetting errors
- 4. Due to the nature of the Phusion™ High–Fidelity DNA Polymerase, the optimal reaction conditions may differ from PCR protocols for standard DNA polymerases.

- 5. Due to the high salt concentration in the reaction buffer the Phusion™ High–Fidelity DNA Polymerase tends to work better at elevated denaturation and annealing temperatures.
- Follow the conditions listed in "Notes about cycling conditions" on page 3 when running your reactions

The PCR

Prepare PCR reactions. Add the following components in the order listed in the following table.

Component	20 μL rxn	50 μL rxn	Final conc.	
H ₂ O	add to 20 µL	add to 50 µL		
5X Phusion™ HF Buffer ^[1]	4 µL	10 μL	1X	
10 mM dNTPs	0.4 µL	1 μL	200 μM each	
Forward primer ^[2]	XμL	X μL	0.5 μΜ	
Reverse primer [2]	XμL	X μL	0.5 μΜ	
Template DNA	ΧμL	ΧμL		
(DMSO ^[3] , optional)	(0.6 µL)	(1.5 µL)	(3%)	
Phusion™ High-Fidelity DNA Polymerase	0.2 μL	0.5 µL	0.02 U/μL	

Notes

- · It is critical that the Phusion™ High–Fidelity DNA Polymerase is the last component added to the PCR mixture, since the enzyme exhibits 3'->5' exonuclease activity that can degrade primers in the absence of dNTPs.
- · Carefully mix and centrifuge all tubes before opening to ensure homogeneity and improve recovery.
 - 2. Run the following program:

Cycle step	2-step protocol		3-step protocol		Outlan
	Temp.	Time	Temp.	Time	Cycles
Initial Denaturation	98°C	30 s	98°C	30 s	1
Denaturation	98°C	5–10 s	98°C	5–10 s	25-35
Annealing [1,2]	-	-	X°C	10-30 s	
Extension [3,4]	72°C	15–30 s/kb	72°C	15–30 s/kb	
Final extension	72°C	5–10 min	72°C	5–10 min	1
Hold	4°C	Hold	4°C	Hold	Hold

 $[\]ensuremath{^{[1]}}$ See "Primer annealing" on page 3.

 ^[1] Optionally 5X GC Buffer can be used. See "Buffers" on page 3 for details.
[2] The recommendation for final primer concentration is 0.5 μM, but it can be varied in a range of 0.2–1.0 μM, if needed.
[3] Addition of DMSO is recommended for GC-rich amplicons. DMSO is not recommended for amplicons with very low GC % or amplicons that are > 20 kb.

^[2] For the 2-step protocol, there is no annealing step.

^[3] See "Extension" on page 4.

^[4] For the 2-step protocol, annealing and extansion are performed at the same temperature.