Introduction to Synthetic Biology

Instructors:

Emily Schiller, Heather Shi, Linh Hoang, Meghan Martin, Helen Shammas

Contact Email: uofr.igem@gmail.com

Course overview:

This course introduces the basics of synthetic biology, genetics, research, and the scientific method. Synthetic biology is a field of science which redesigns and engineers organisms to give them new abilities that could benefit society. For example, scientists have designed microorganisms that can clean pollutants from water, or yogurt that can clean teeth. There are a total of 9 modules, with each lasting 10-15 minutes. The modules include a mix of short lessons, short activities, and at-home experiments to help students to further understand the material and the concepts.

Learning objectives:

By the end of this course, students will be able to gain a basic understanding of synthetic biology, bioethics, current synthetic biology application and scientific research. Students will be able to write a scientific lab report based on an experiment and evaluate their performances and understanding of the course through the written assignments and activities.

Modules, reading and homework:

Learning in this course includes short readings, lectures, and assignments (answering questions on google form, performing one at home experiment, etc). Please read the articles assigned in each module before watching the module and submit the google form or any assignments after completing each module. The questions and activities in each module are designed to maximize your engagement of the course and understanding of the concept. The powerpoint lecture slide is uploaded as well as any additional material on the blackboard under the corresponding module.

Grading:

Although this course is not graded, we encourage you to complete the module and submit the Google form and all the necessary materials. Students who successfully complete all modules will receive a letter certifying your accomplishments from University of Rochester iGEM advisor Dr. Anne S. Meyer, a course certificate, and will be asked to be featured on the University of Rochester iGEM Wiki page (the iGEM competition page that lists and summarizes the UR iGEM project for the judges and general public). Students will have the option to opt out of being featured by name.

Course outline:

Module #	Topic	Overview of the course	Link to the reading material	Link to the google form
#	Topic	Overview of the course		IOTIII
1	Basic biology	Introduce the structure of the course and the basics of genetics (Gene, DNA, chromosomes, the central dogma).	What is the "Central Dogma"? Overview of Genes, DNA, and Chromosome	Google Form #1
2	Basic synthetic biology	Explain basics of synthetic biology; how is synthetic biology different than other science disciplines; give examples of how synthetic biology is used and who uses it	Chapter 1: Fundamentals of Synthetic Biology	Google Form #2
3	Biobricks	Discuss what BioBricks are; learn about common BioBricks and their functions in gene expression; understand why are BioBricks useful to synthetic biologists; Introduction to Synthetic Biology Open Language for communication.	What are BioBricks?	Google Form #3
4	CRISPR system	Introduce CRISPR/Cas9: its history, mechanism, and different delivery systems		Google Form #4
5	Biosensors and bioreporter s	Introduce the function of biosensors and reporters; provide real life examples	Biosensors and their applications A review	Google Form #5
6	Synthetic biology application in the real world	Conditions for success of large scale/commercial synbio use; examples of commercial synbio products	N/A	Google Form #6
7	Ethical issues around synthetic biology	Define the Dual-Use Dilemma and understand why it is important; learn about ethical themes in synthetic biology; discuss popular ethical topics	From Corgis to Corn: A Brief Look at the Long History of GMO Technology	Google Form #7

8	How to write a lab report	Introduce the structure and component of a lab report; DNA extraction experiment.	N/A	- Sample lab report - DNA extraction lab report submission
		Give an overview of iGEM competition; talk about what our		
		project is & our inspiration;		
	Introducin	discuss SAA and its purpose;		
	g our	show how we are reflecting	Explore iGEM's website	
	iGEM	endometriosis in art; give	(~10-15 mins)	
	project and	examples of other forms of		
9	SAA	expression	Taiwan 2016	Google Form #9