Site Directed Mutagenesis

Introduction

LucidChart Overviews | DNA | Combined Procedures List Q5® Site-Directed Mutagenesis Kit Protocol Product Manual

Materials

- > Q5 Site-Directed Mutagenesis Kit
 - > NEB® 5-alpha Competent E. coli (High Efficiency)
 - > Q5®-Hot Start High-Fidelity 2X Master Mix
 - > SOC Outgrowth Medium
 - > Control SDM Plasmid
 - > Control SDM Primer Mix
 - > KLD Enzyme Mix
 - > KLD Reaction Buffer
 - > pUC19 Vector
- > Forward and Reverse Primers
- > Template DNA
- > Nuclease-free water
- Ice
- > Selection Plates

Procedure

Step I: Exponential Amplification (PCR)

1. Assemble the following reagents in a thin-walled PCR tube.

Table	1		
	А	В	С
1		25 µl RXN	Final Concentration
2	Q5 Hot Start High-Fidelity 2X Master Mix	12.5 µl	1X
3	10 µM Forward Primer	1.25 µl	0.5 µM
4	10 µM Reverse Primer	1.25 µl	0.5 µM
5	Template DNA (1–25 ng/µl)	1 µl	1-25 ng
6	Nuclease-free water	9.0 µl	

2. Mix reagents completely, then transfer to a thermocycler.

3. Perform the following cycling conditions:

Thermocycling Conditions for a Routine PCR:

* For a Q5-optimized annealing temperature of mutagenic primers, please use NEBaseChangerTM, the online NEB primer design software. For pre-designed, back-to-back primer sets, a Ta = Tm + 3 rule can be applied, but optimization may be necessary.

Table2					
	А	В	С		
1	Step	Temperature °C	Time		
2	Initial Denaturation	98	30 seconds		
3	25 Cycles	98	10 seconds		
4		50-72	10-30 seconds		
5		72	20-30 seconds/kb		
6	Final Extension	72	2 minutes		
7	Hold	4-10			

Step II: Kinase, Ligase & DpnI (KLD) Treatment

4. Assemble the following reagents:

Table3					
	Α	В	С		
1		Volume	Final Concentration		
2	PCR Product	1 µl			
3	2X KLD Reaction Buffer	5 μΙ	1X		
4	10X KLD Enzyme Mix	1 µl	1X		
5	Nuclease-free Water	3 µl			

~

5. Mix well by pipetting up and down and incubate at room temperature for 5 minutes.

Step III: Transformation

- 6. Thaw a tube of NEB 5-alpha Competent E. coli cells on ice.
- Add 5 µl of the KLD mix from Step II to the tube of thawed cells. Carefully flick the tube 4-5 times to mix. Do not vortex.
- 8. Place the mixture on ice for 30 minutes.
- 9. Heat shock at 42°C for 30 seconds.
- 10. Place on ice for 5 minutes.
- 11. Pipette 950 µl of room temperature SOC into the mixture.
- 12. Incubate at 37°C for 60 minutes with shaking (250 rpm).
- 13. Mix the cells thoroughly by flicking the tube and inverting, then spread 50-100 µl onto a selection plate and incubate overnight at 37°C. It may be necessary (particularly for simple substitution and deletion experiments) to make a 10- to 40-fold dilution of the transformation mix in SOC prior to plating, to avoid a lawn of colonies