PCR

Aim of the experiment

This experiment can be used for exponential amplification of a DNA of interest. There are different existing variations and applications of the reaction which can be used for special functions (i.e. addition of certain short sequences at 3 or 5 point end, insertion of point mutation etc.) Use NEB Tm Calculator to calculate the annealing temperature of the primers.

Materials

- Reverse Primer
- Template DNA
- 2×Pfu MasterMix (Dye)
- Forward Primer
- ddH2O

Procedure

1. To a PCR tube add following reagents:

Table : PCR-Mix

Chemicals	Concentration
2×Pfu MasterMix(Dye)	1×
Forward Primer, 10 μM	0.4uM
Reverse Primer, 10 μM	$0.4 \mathrm{uM}$
Template DNA	<0.5 μg/50 μl
ddH2O	up to 50 μl

Transfer tube to a Thermocycler and run following program:

Step	Temperature	Time	
Initial denaturation	94°C	2min	

denaturation	94°C	30s
annealing temperature	60°C	30s 30 cycles
extension	72°C	10s
Final extension	72°C	5min

Possible follow-up protocols

The following protocols are the next steps of a possible cloning cycle after a Polymerase Chain Reaction (PCR):

- 1. Restriction digest
- 2. Agarose-Gel-electrophoresis
- 3. PCR clean-up