### DESIGNING INSULIN TO BE SINGLE CHAIN AND OPEN SOURCE



Insulin replacement therapy is the only effective treatment for all Type I and 30% of Type II diabetics.

But despite insulin being commercially available since 1923...

"Insulin is only for the rich"

'Paying more than USD \$700 a month for [insulin] "

> Some of my friends have **died** from lack of insulin "

"There are many times I can't afford my meds so I go without, even knowing it will kill me."

#### WHY is insulin accessibility a problem?



The incidence of diabetes is rising

rapidly

the cost of insulin has more than tripled in a decade



supply to remote areas is usually poor ( particularly without refrigeration)

#### Our Solution

After consulting experts with start-up, pharmaceutical and legal backgrounds, we concluded that our solution was to create a novel, open source, single chain insulin using 3 optimised expression systems.



#### AFFORDABLE

Activation of proinsulin requires cleavage of the C-peptide, whereas single chain insulins do not require this additional processing step.

#### SHORT ACTING

WHO announced in 2013 that short-acting insulin is an "essential medicine", while long-acting is not. So, we designed - using modelling - our single chain insulin to be short-acting.

 $Insulin_{Hexamer} \leftrightharpoons Insulin_{Dimer}$ 

#### STABLE

Due to the structure of the linker peptide, single chain insulins are more stable than human insulin.

#### UNPATENTABLE

Our Winsulin was designed to be open-source.

In collaboration with legal experts, we took steps to ensure that our linker region did not infringe existing patents.

#### HOW DID WE DO THIS?

#### Single Chain Insulin: Winsulin



GLYCINE SUBSTITUTION Arginine to Glycine substitution at position A21.

Increases pl to improve stability.

#### LINKER DESIGN

DIBASIC RESIDUES Systematic screening revealed that these dibasic residues are required for insulin receptor binding.



Generic linker providing flexibility for A and B chain to form the correct

disulphide bonds for activity

#### 12 AMINO ACIDS LONG

Short linker sequences cause steric hindrance, impairing the ability of insulin to fold properly.

There is no optimal length but high activity has been shown in linkers between 5 - 15 amino acids long.

#### PROTEASE RESISTANT

The sequence this linker was adapted from was cleavage resistant, so we expect our linker to also have this property.

#### 3 Expression Systems

#### E. coli CYTOPLASMIC EXPRESSION





unfolded protein in cytoplasm

in periplasm

folded protein in periplasm

unfolded proteir

Synthetic Circuit Dynamics

# ■ PERIPLASMIC

E. coli PERIPLASMIC EXPRESSION



Comparative

modelling of

cytoplasmic and

periplasmic

expression indicated

that an oxidising

environment is a key

determinant of yield.

Therefore, we used

SHUFFLE strain in an

attempt to match

cytoplasmic yield

with periplasmic.

### B. subtilis SECRETORY EXPRESSION BB Suffix





6x His Tag on our insulin constructs will AND the His-Tag bind to a nickel column

And is it

to cleave off the C-peptide

to cleave off the

His-Tag

- BB Suffix

#### Achievements

Minutes

PERIPLASMIC



| ELISA demonstrated | the expression of correctly folded human insulin / Winsulin, and the successful secretion of

YncM-Winsulin into

culture media.

CYTOPLASMIC

Minutes

Did we **make** 

insulin / Winsulin ?

YES

protein in bodies

folded protein

Figure 1: Cells successfully produced correctly folded human insulin and Winsulin. ELISA demonstrates insulin specific antibody binding to folded insulin proteins within samples.

## HepG2 Assay

#### functional? - Human insulin YES - Winsulin most likely Glucose uptake

assay in human hepatocytes proved that human insulin I is functional and Winsulin is highly probably functional in vitro.

Figure 2: Cells successfully produced biologically functional human insulin and Winsulin. Glucose uptake assay in human HepG2 cells shows increased glycogen synthesis when incubated with samples of human insulin / Winsulin compared to a basal (no insulin added) control. Error bars represent SEM, horizontal bars indicate statistical significance (\* = p < 0.05) calculated using unpaired 1-tailed T-test (n=3).

#### Attributions & Sponsors

#### Attributions

PI: Dr Nick Coleman

Secondary PI: Professor Jacqui Matthews & Dr Ed Hancock Lab Support: Mark Somerville & Yanwei Ma Expert Advisors: Len Mancini, Neil Donelan, Mike Nicholls, Narcyz Ghinea, Dr David Beran, Dr Andrew Hoy

Special Thanks to Professor Peter Arvan, Professor Sui-Lam Wong, Simon Lewinson & Open Insulin

#### Sponsors

Office of the Chief Scientist & Engineer



















 $oldsymbol{N}_{oldsymbol{\mathsf{S}}}$   $oldsymbol{\mathsf{S}}$ nap $oldsymbol{\mathsf{G}}$ ene $^{oldsymbol{\mathsf{e}}}$ 

BIOLINE