
Microfluidic Chip Heater Design Notebook

Author: Swagat Bhattacharyya

I. Introduction

The Purdue iGEM microfluidic (MF) chip has a reaction chamber that must be held steady

at certain temperatures to properly react reagents. Conventional temperature control mechanisms,

such as hot plates and ovens are bulky and expensive. Since a compact, low-cost solution is desired

to make Purdue iGEM’s MF platform more accessible, we have developed a minimalistic heating

mechanism that can quickly heat up and regulate the temperature of a MF reaction chamber to

within 1°C of any desired temperature between 30°C and 90°C.

II. Heat Transfer

Heat transfer characteristics are important for determining the required output flux of the

heating mechanism and determine the local temperature gradient. Initially, we assume that the MF

chip will be placed atop a circular, metallic heating element with radius 𝑅 as shown in Fig. 1a. We

assume that the circular region of the MF chip in direct contact with the heating element has a

temperature of 𝑇𝐵𝐶 and that the surface temperature falls to room temperature (𝑇𝑅𝑇) at some radial

distance 𝜖 from the center of the heating element. Then, the steady-state surface temperature

function, 𝜙(𝑥, 𝑦), with 𝑅 < 𝑟 = √𝑥2 + 𝑦2 < 𝜖 will follow Laplace’s equation: ∇2𝜙(𝑥, 𝑦) = 0

assuming no heat loss. The boundary value problem can be solved over the annulus in the complex

plane [1] to yield:
(𝑇𝐵𝐶−𝑇𝑅𝑇) 𝑙𝑜𝑔 𝑟+𝑙𝑜𝑔

𝑅(𝑇𝑅𝑇)

𝜖(𝑇𝐵𝐶)

𝑙𝑜𝑔
𝑅

𝜖

. To summarize, the surface temperature distribution

will be given by:

𝜙(𝑥, 𝑦) ≈ {

𝑇𝐵𝐶 ; 𝑤ℎ𝑒𝑛 𝑟 < 𝑅

(𝑇𝐵𝐶−𝑇𝑅𝑇) 𝑙𝑜𝑔 𝑟+𝑙𝑜𝑔
𝑅(𝑇𝑅𝑇)

𝜖(𝑇𝐵𝐶)

𝑙𝑜𝑔
𝑅

𝜖

 ; 𝑒𝑙𝑠𝑒
 (1)

An example of a surface temperature distribution with 𝑇𝐵𝐶 = 50℃ and 𝑅 = 0.5 is shown in Fig.

1b. We observe that the surface temperature rapidly drops near room temperature within 2 cm of

the reaction chamber for sensible values of 𝜖.

 An important criterion for the design of the overall system is the heater temperature (𝑇𝐻)

required to maintain 𝑇𝐵𝐶. This can be estimated by back-calculation from the finite-flux Neumann

condition using a finite difference method. Since the heater has finite output heat flux, the

following Neumann condition holds:

𝑘𝑃𝐷𝑀𝑆
𝜕𝜙

𝜕𝑧
=

𝑞

𝜋𝑅2 (2)

In Eq. 2, 𝑘𝑃𝐷𝑀𝑆 denotes the thermal conductivity of the PDMS (about 0.0015
𝑊

𝑐𝑚⋅𝐾
) used to

construct the MF chip and 𝑞 denotes the thermal power dissipation (TDP) of the heater. The TDP

of the heater in turn is given by: 𝑞 = 𝑉2/𝑅𝐻, where 𝑉 denotes the voltage drop across the heating

element and 𝑅𝐻 denotes the heating element resistance. If we substitute the finite difference

approximation:
𝜕𝜙

𝜕𝑧
≈

𝑇𝐻−𝑇𝐵𝐶

𝛥𝑧
 into Eq. 2, we obtain:

𝑇𝐻 ≈ 𝑇𝐵𝐶 +

𝑉2

𝑅𝐻
Δ𝑧

𝜋𝑅2𝑘𝑃𝐷𝑀𝑆
 (3)

If we return to the previous example (shown in Fig. 1b), we estimate that
𝜕𝜙

𝜕𝑧
≈ 6063 ℃/𝑐𝑚. If we

take Δ𝑧 = 0.1 𝑚𝑚, we estimate that the heater element should be at 110℃ to heat the reaction

chamber to 50℃. This represents a large (vertical) thermal gradient which makes it very difficult

to heat the reaction chamber through the PDMS walls. The large thermal gradient is caused by the

low thermal conductivity of PDMS, which is three to four orders of magnitude lower than that of

most metals. Since the MF chip is intended to be disposable, the simplest and cheapest workaround

for efficient heat transfer and temperature control is to embed a thin metallic insert (eg. Staple,

push pin, etc.) through the bottom layer into the reaction chamber, such that the heating element

can transfer heat through the insert into the reaction chamber. Special care should be taken to

ensure that this insert does not cause Purdue iGEM’s MF chip to leak; however, this is unlikely at

the low pressure differentials present.

(a) (b)

Fig. 1: (a) Diagram of heater placement and sign conventions (b) Chip surface temperature (ºC)

in proximity of the heating element [𝑇𝐵𝐶 = 50℃ and 𝑅 = 0.5]

III. Experimental Setup

An experimental test setup (shown in Fig. 2) using a steel wool-based heater was created

in order to better understand different aspects of heater design and test algorithms. Although there

are expected to be some differences between the prototype and the final product, it is expected that

the results presented in this work will translate well to the final product. The mean TDP of the

heater is controlled via an algorithm running on an Arduino microcontroller. The microcontroller

reads the heater temperature via a negative temperature coefficient (NTC) thermistor voltage

divider, performs control decisions, and then outputs a pulse-width modulation (PWM) signal to

the gate of a n-channel Metal-Oxide Field-Effect Transistor (nFET) to regulate the heater (see Fig.

2). A large duty cycle on the PWM output corresponds to a high TDP, and a low duty cycle on the

PWM output corresponds to a low TDP. In general, the mean TDP is: 𝑞 = 𝐷𝑢𝑡𝑦 ⋅ 𝑉2/𝑅𝐻.

Fig. 2: Diagram of heater system experimental test setup

IV. Heater Control Algorithm

Iteration 1:

The first iteration of the control algorithm had two distinct controllers: (1) bang-bang (2)

proportional-integral (PI). The central idea behind the control mechanism was to use a bang-bang

controller to output the maximum duty cycle (or turn off) to change the reaction chamber

temperature from the current temperature to another setpoint (i.e. target temperature). Then, when

the heater temperature is within a certain neighborhood of the setpoint, a PI controller is used to

robustly offset heat loss from the reaction chamber (flowcharts summarizing the control algorithms

in more detail can be seen in Fig. 3); the output of the PI controller is the estimated heat flux

(𝑞/𝐴𝐸𝑓𝑓) required, where 𝐴𝐸𝑓𝑓 denotes the effective total surface area of the heater and reaction

chamber. If we assume that convective heat loss dominates in our application, the estimated heat

flux required to hold the reaction chamber temperature constant at the setpoint (𝑇𝑆𝑒𝑡𝑃𝑜𝑖𝑛𝑡) would

be approximately: ℎ(𝑇𝑆𝑒𝑡𝑃𝑜𝑖𝑛𝑡 − 𝑇𝑅𝑇), where ℎ denotes the convective heat loss constant, which

is about 1.5
𝑚𝑊

𝑐𝑚2⋅℃
 for stagnant air. This value is used to initialize the PI controller output (i.e. 𝑢0 =

1.5 × 10−3 𝑊

𝑐𝑚2⋅℃
⋅ (𝑇𝑆𝑒𝑡𝑃𝑜𝑖𝑛𝑡 − 𝑇𝐴𝑡𝑚). The PI controller was formulated in its iterative velocity

form:

 𝑢𝑘 = 𝑢𝑘−1 − Δ𝑢𝑘; 𝛥𝑢𝑘 = 𝑘𝑝 (𝑒𝑘 − 𝑒𝑘−1 +
𝑇𝑘−𝑇𝑘−1

𝜏𝑖
⋅ 𝑒𝑘−1) (4)

In Eq. 4, 𝑘𝑝, 𝜏𝑖, 𝑇𝑘, and 𝑒𝑘 denote the proportional constant, the integral time constant, the time at

step 𝑘 , and the error from the set point at step 𝑘 . The error at time step 𝑘 is given by: 𝑒𝑘 =
𝑇𝑀𝑒𝑎𝑠𝑘

− 𝑇𝑆𝑒𝑡𝑃𝑜𝑖𝑛𝑡, where 𝑇𝑀𝑒𝑎𝑠𝑘
 denotes the measured reaction chamber temperature at time step

𝑘. The PI controller output is then converted to a duty cycle using:

𝐷𝑢𝑡𝑦𝑘 =
𝑅𝐻⋅𝑢𝑘

𝑉2⋅𝐴𝐸𝑓𝑓
 (5)

Note that the maximum and minimum duty cycle are limited in the actual implementation.

Experimental measurements of the system response (heating element temperature) to a step change

in the set point is shown in Fig. 4. There are three key observations to be made in Fig. 4. First,

there is a significant amount of sensor noise, which can negatively affect stability. Second, the

temperature dips significantly when the controller switches over from bang-bang to PI control; this

is because the steady-state heat loss estimates were off. Third, there is a large overshoot above the

setpoint that seems to be caused by integral windup (i.e. the integrator accumulating the error terms

despite the heater being turned on to its upper or lower limit).

A Python-Arduino interface was designed for data logging, data analysis, and high-level

control of the MF chip. This interface allows for two levels of abstraction, which makes things

easier for users and future developers. The Python script running on a host computer (i.e. the

clinician’s computer) passes hardware parameters to the Arduino at the appropriate time and can

analyze/visualize data sent from the Arduino. The Arduino performs hardware control at the lowest

level with control algorithms. The communication between Python and Arduino is structured. The

Python code iterates through the available serial ports on the host computer, sending a specific

packet to find the port where the Arduino is connected. Once the Python code finds the proper

serial port and establishes proper communications, a user-specified script is run. This user-

specified script typically includes an assortment of serial communications tasks. In a standard

exchange, Python will first send three bytes to the Arduino, where the first byte will correspond to

an instruction (eg. turn on the heater, move a motor, etc.), and the second and third bytes will be

auxiliary numerical information to execute the instruction (eg. set point, motor speed, target motor

position, etc.). The, the Arduino will send tab delimited information (eg. temperature, fluorescence,

etc.) back to the host computer.

(a) (b) (c)

Fig. 3: (a) Flowchart of overall control algorithm (b) Bang-bang controller for switching between

set points (c) PI controller for holding a set point

Fig. 4: Experimental measurements of controller (Iteration 1) with setpoint of 50°C

Iteration 2:

The final iteration of the heater control algorithm sought to mitigate the issues observed

from the previous iteration. To ensure smoothness in the system response, only one controller was

used (no switching action). A proportional-integral-derivative (PID) controller with anti-windup

was used. Due to the presence of a derivative term, special care was taken to reduce sensor noise.

Sensor noise reduction was performed using an exponential moving average (EMA) filter, which

is defined by the following iterative equation:

𝑇𝑀𝑒𝑎𝑠,𝐹𝑖𝑙𝑡𝑘
= 𝛼𝑇𝑀𝑒𝑎𝑠𝑘

+ (1 − 𝑇𝑀𝑒𝑎𝑠,𝐹𝑖𝑙𝑡𝑘
); 𝑇𝑀𝑒𝑎𝑠,𝐹𝑖𝑙𝑡0

= 𝑇𝑀𝑒𝑎𝑠0
 (6)

In Eq. 6, 0 < 𝛼 < 1 denotes the memory factor of the EMA filter, and 𝑇𝑀𝑒𝑎𝑠,𝐹𝑖𝑙𝑡𝑘
 denotes the

filtered temperature measurement. The PID controller here is defined by:

𝑢𝑘 = 𝑢𝑘−1 − Δ𝑢𝑘; 𝑢0 = 1.5 × 10−3 𝑊

𝑐𝑚2⋅℃
⋅ (𝑇𝑆𝑒𝑡𝑃𝑜𝑖𝑛𝑡 − 𝑇𝑅𝑇) (7)

Where the increment is given by:

Δ𝑢𝑘 = 𝑘𝑝 (𝑒𝑘 − 𝑒𝑘−1 +
𝑇𝑘−𝑇𝑘−1

𝜏𝑖
⋅ 𝑒𝑘−1 ⋅ 𝜖 +

𝜏𝑑

𝑇𝑘−𝑇𝑘−1
⋅ (𝑒𝑘 − 2𝑒𝑘−1 + 𝑒𝑘−2)) (8)

𝑒𝑘 = 𝑇𝑀𝑒𝑎𝑠,𝐹𝑖𝑙𝑡𝑘
− 𝑇𝑆𝑒𝑡𝑃𝑜𝑖𝑛𝑡 (9)

In Eq. 8, 𝑇𝑑 denotes the derivative time constant and 𝜖 denotes the anti-windup switch. The anti-

windup switch is defined by:

𝜖 = {
0; 𝑢𝑘−1 < 0 𝑜𝑟 𝑢𝑘−1 > 𝐷𝑢𝑡𝑦𝑀𝑎𝑥 ⋅

𝑉2

𝑅𝐻
⋅ 𝐴𝐸𝑓𝑓

1; 𝑒𝑙𝑠𝑒
 (10)

In Eq. 10, 𝐷𝑢𝑡𝑦𝑀𝑎𝑥 denotes the maximum permissible duty cycle (for safety reasons). The

controller defined by Eq. 6-10 works well as demonstrated by experimental measurements of the

system response to a step change in the set point shown in Fig. 5. There is low measurement noise,

and the system responds quickly but does not overshoot.

Fig. 5: Experimental measurements of controller (Iteration 2) with setpoint of 50°C

V. Results and Discussion

The PID control algorithm written was tested for setpoints between 30-90°C as shown in

Fig. 6. As seen in Fig. 6, the controller approached the setpoint fast without significant overshoot

for all setpoints tested. Furthermore, there was no asymptotic error and low noise. When the

controller activates, the spike in the P+D components of the controller output may cause the duty

cycle to be capped to 𝐷𝑢𝑡𝑦𝑀𝑎𝑥, pushing the heater toward the setpoint rapidly. When this happens,

the integrator is turned off until the duty cycle returns within the bounds. Ultimately, the integral

term is responsible for holding the heater at the setpoint as 𝑡 → ∞. However, the temperature that

the sensor measures may not be the true temperature – there may be 1 − 2℃ of error in the sensor

measurement itself.

The cooldown time is trickier to experimentally characterize but can be motivated

theoretically. It can be shown that (if we assume convective heat loss is the dominant heat transfer

mechanism) the reaction chamber temperature during cooling can be approximated by:

𝜕𝑇

𝜕𝑡
≈

ℎ(𝑇𝑅𝑇−𝑇)𝐴𝐸𝑓𝑓

𝑚𝑤𝐶𝑣+𝑚𝐻𝐶𝑝
 (11)

In Eq. 11, 𝑚𝑤 denotes the mass of the fluid inside the reaction chamber, 𝑐𝑣 denotes the specific

heat at constant volume for the fluid (about 4
𝐽

𝑔⋅𝐾
 assuming the fluid is mostly water), 𝑚𝐻 denotes

the mass of the heating element (0.4
𝐽

𝑔⋅𝐾
 for steel), and 𝐶𝑝 denotes the specific heat at constant

pressure of the heating element (). Solving this ODE for 𝑇𝑅𝑇 < 𝑇 yields: 𝑇 = 𝑇𝑅𝑇 +

(𝑇0 − 𝑇𝑅𝑇)𝑒
−

ℎ𝐴𝐸𝑓𝑓

𝑚𝑤𝐶𝑣+𝑚𝐻𝐶𝑝
𝑡
, where 𝑇0 is the initial heater temperature. Hence, the time required to

cool to a temperature 𝑇𝐶𝑜𝑜𝑙 would be given by: 𝑡𝐶𝑜𝑜𝑙 =
𝑚𝑤𝐶𝑣+𝑚𝐻𝐶𝑝

ℎ𝐴𝐸𝑓𝑓
ln (

𝑇0−𝑇𝑅𝑇

𝑇𝐶𝑜𝑜𝑙−𝑇𝑅𝑇
) . From this

formula, we find that for most MF chip-heater configurations, we can say 𝐴𝐸𝑓𝑓~𝑅𝐶ℎ𝑎𝑚𝑏
2 (i.e. the

effective surface area is dominated by the surface area of the thin cylindrical reaction chamber)

and notice that 𝑚𝑤𝐶𝑣 ≫ 𝑚𝐻𝐶𝑝 and 𝑚𝑤~𝑅𝐶ℎ𝑎𝑚𝑏
2 . Thus, we find that the cooling time is largely

independent of the reaction chamber radius (𝑅𝐶ℎ𝑎𝑚𝑏). An example cooling time computation with

some semi-arbitrary parameters is shown in Exp. 1.

Fig. 6: Experimental measurements of PID controller with setpoints between 30-90°C

Exp. 1: Demonstration of cooling time estimation

We want to find the time it will take for 70 𝑚𝑚3 of water (𝑚𝑤 = 0.07 𝑔) to cool from 𝑇0 =

80℃ to 𝑇𝐶𝑜𝑜𝑙 = 37℃ if 𝑇𝑅𝑇 = 25℃, ℎ = 1.5 × 10−3 𝑊

𝑐𝑚2⋅℃
, 𝐶𝑣 = 4

𝐽

𝑔⋅𝐾
, 𝐴𝐸𝑓𝑓 = 1 𝑐𝑚2, 𝐶𝑝 =

0.4
𝐽

𝑔⋅𝐾
, and 𝑚𝐻 = 0.1 𝑔.

𝑡𝐶𝑜𝑜𝑙 =
𝑚𝑤𝐶𝑣 + 𝑚𝐻𝐶𝑝

ℎ𝐴𝐸𝑓𝑓
ln (

𝑇0 − 𝑇𝑅𝑇

𝑇𝐶𝑜𝑜𝑙 − 𝑇𝑅𝑇
) ≈ 𝟑𝟐𝟓 𝒔 (𝟓. 𝟒 𝒎𝒊𝒏𝒔)

Note that the cooling time would have been about 41 s if there was no water in the reaction

chamber. These numbers are generally an overestimate because there are other cooling

mechanisms besides convection.

References

[1] Fundamentals of Complex Analysis by E.B. Saff & A.D. Snider

