In order to construct high and mid copy pelB-TEV-Ag43 constructs,

pet22b-pelB-TEV-Ag43-AmpR, to get TEV protease,

pZa-pBAD-ALP-Cmr, to get mid copy backbone,

pZe-pBAD-ALP-AmpR, to get high copy backbone,

were inoculated, miniprep was done, and nanodrop analysis performed.

Sample	Conc. (ng/µl)	260/280	260/230
pZa-pBAD-ALP-Cmr	167.2	1.90	1.67
pet22b-pelB-TEV-Ag43-AmpR	232.2	1.91	1.73
pZe-pBAD-ALP-AmpR	600.1	1.93	2.12

Restriction Enzyme Digestions:

pZa-pBAD-ALP-Cmr (KpnI&XhoI)

0.5 μl nuclease-free water

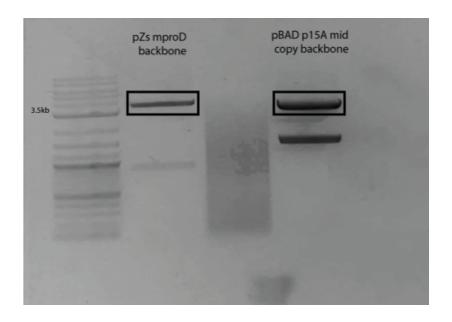
1 μl Cutsmart

8 μl DNA

0.25 µl KpnI

0.25 μl HindIII

pZe-pBAD-ALP-AmpR (KpnI&XhoI)


6.5 µl nuclease-free water

1 μl Cutsmart

2 μl DNA

0.25 µl KpnI

0.25 µl HindIII

Sample order: 1) Ladder, 2) pZs-mproD-UreR-KanR, 3) pZe-pBAD-ALP-AmpR , 4) pZa-pBAD-ALP-Cmr

Gel Extraction for pZa-pBAD-ALP-Cmr was done.

Nanodrop Analysis:

Sample	Conc. (ng/µl)	260/280	260/230
pZa-pBAD-ALP-Cmr	32.1	2.25	0.05

pZe-pBAD-ALP-AmpR was inoculated again and miniprep was done.

• Concentration: 704.2 ng/μL

Restriction enzyme digestion for pZe-pBAD-ALP-AmpR:

2 uL DNA

1 uL CutSmart

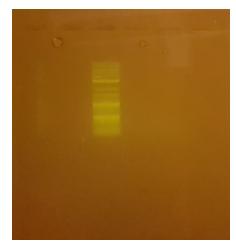
0.25 uL KpnI

0.25 uL XhoI

6.5 uL ddH₂O

Sample was loaded and run on the gel, no bands were observed.

Another restriction digestion was set up to pZe-pBAD-ALP-AmpR for 3 hours:


2 μl DNA

1 μl Cutsmart

0.25 µl KpnI

0.25 µl XhoI

6.5 μl ddH

Failed

To retry restriction digestion, pZe-pBAD-ALP-AmpR was inoculated.

Miniprep and nanodrop analysis were performed.

• Concentration: 564.4 ng/µl

Restriction digestion to pZe-pBAD-ALP-AmpR:

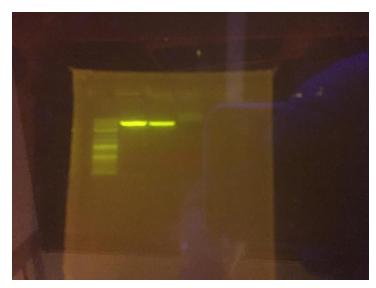
2 μl DNAT

1 μl CutSmart

0.25 µl KpnI

0.25 µl XhoI

6.5 µl ddH₂O


Sample was loaded and run on the gel after 0.5 hour digestion.

There was a single band \Rightarrow no sign of a successful double digestion

Since digestion was failed, 30 minutes digestion again performed with same concentrations. Only single band was observed \rightarrow no cut.

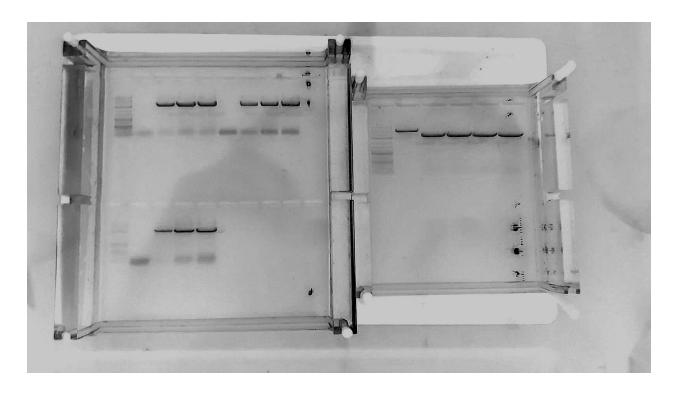
Restriction Digestion to pZe-pBAD-ALP-AmpR:

- 1. Double digestion (KpnI&XhoI)
- 2. Only with KpnI
- 3. Only with XhoI

Sample Order: Ladder-1-2-3

Gibson primers were ordered to clone TEV protease into mid and high copy backbones:

Overhang Backbone	Annealing Backbone	Name	Description	Base Pairs	Tm	Tm w/ Overhang	Anneal	100 μM stock- μl TE
pZe-pBAD-A	pet22b-pelB-	iGEM2019-P3	High-Fwd- V1	50	65	79		496
LP-AmpR	mpR	iGEM2019-P4	High-Rev- V1	51	64	79	65	503
pZa-pBAD-A	pet22b-pelB- TEV-Ag43-A	iGEM2019-P5	Mid-Fwd-V 1	51	60	75		718
LP-Cmr,	mpR	iGEM2019-P6	Mid-Rev-V 1	50	58	78	59	685


PCR reactions:

 μ l Forward μ l Reverse μ l Q5 High-Fidelity 2X Master Mix μ l ddH₂O Total: 100 µl

From 100 μ l total mix without DNA \rightarrow 25 μ l was transferred to control tube. 75 μ l complete mix with DNA was split into 3 PCR tubes.

The steps done for plasmid with Linker TEV + sfGFP were also done for plasmid with AraC + TEV protease with two different tubes (P3+P4 & P5+P6).

12 PCR tubes were prepared (+4 tubes that are wrongly prepared also added ⇒ total 16 tube

Gel extraction was done and nanodrop results are shown below:

Sample	Conc. (ng/µl)	260/280	260/230
TEV high	120.8	2.68	1.46
TEV mid	118.5	2.09	0.25

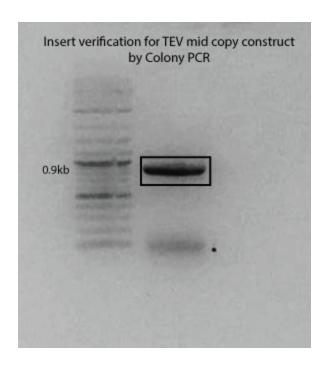
Gibson Assembly:

pZA backbone + TEV
 ng insert (TEV) + 50 ng plasmid (pZA mid copy)

 \Rightarrow 1.62 µl backbone + 0.44 µl insert + 0.44 µl ddH₂O

Pro cells were transformed with the Gibson product, and colony PCR was performed for verification:

A single colony was selected and dissolved in 5 μl ddH₂O.

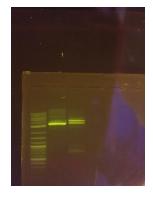

5 μl DNA 2 μl 10X Pfu Reaction Buffer 1 μl forward primer (pREA19) 1 μl reverse primer (pREA115) 10.4 μl ddH₂O 0.4 μl dNTP 0.2 μl polymerase

Total: 20 µl

PCR Program:

Initial Denaturation at 95 °C 3 minutes Denaturation at 95 °C 30 seconds Annealing 58 °C 30 seconds Extension 72 °C 1.5 minutes Final Extension 72 °C 5 minutes

Total 25 Cycles



Miniprep was done to TEV mid copy construct from two selected colonies:

Sample	Conc. (ng/µl)	260/280	260/230
Col1	136.6	1.97	1.81
Col2	113.6	1.94	2.02

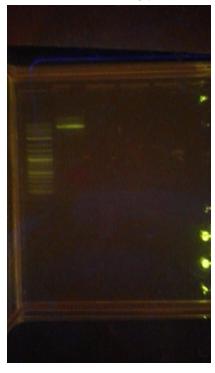
The Cmr resistance gene of TEV mid copy construct will be replaced with Amp resistance gene digested from csREA20 plasmid. Thus, digestions was performed on TEV mid construct with SacI & AatII to remove Cmr resistance gene. Also, another digestion was performed on csREA20 plasmid with the same enzymes to remove Amp resistance gene.

gel order: ladder-csrea20-TEV mid construct

Digestion ITEV mid Col1 concentration: 136.6 ng/μl

8 μl sample 0.25 μl SacI 0.25 μl AatII 1 μl Cut Smart 0.5 μl ddH₂O

Digestion II (for verification)


TEV mid Col2

concentration: 113.6 ng/µl

 $4.5~\mu l$ sample $1~\mu l$ Cut Smart $0.25~\mu l$ KpnI $4.25~\mu l$ ddH $_2O$

Digestion IIITev mid Col2
concentration: 113.6 ng/μl

First, AatII was added and incubated for 1 hour. Then, SacI was added and incubated for 1 hour:

8 μl sample

0.25 µl SacI

0.25 µl AatII

1 μl Cut Smart

0.50 µl ddH₂O

Digestion of TEV mid copy:

5 μl sample

3.5 µl ddH₂O

1 μl CutSmart

0.25 µl AatII

0.25 µl SpeI-HF

Firstly, AatII was added as an enzyme. Then, without adding SpeI, the reaction mixture was kept at 37°C for 2 hours. Then, to inactivate AatII, the reaction mixture was incubated at 80°C for 20 minutes (in thermocycler). Then, SpeI enzyme was added to the mixture and the mixture was incubated at 37°C for 30 minutes. Then, gel electrophoresis was performed. No bands were observed.

 $pZE ALP \rightarrow Miniprep$

PCR was done with pZe pureR & p41.

Conc. (ng/µl)	260/280	260/230
170.8	1.95	1.29

Cell Inoculation: Col2 (TEV mid)

Miniprep to TEV mid Col2

Conc. (ng/µl)	260/280	260/230
298.0	2.06	2.11

Colony PCR with csREA20 to obtain AmpR was done.

PCR for TEV mid was done.

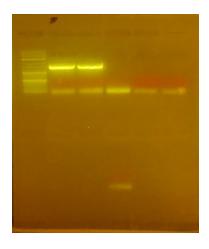
Later these two will be cut and ligated, therefore Cmr resistance will be replaced with AmpR.

AmpR and TEV mid backbone were digested with SpeI and AatII for 1.5 hours. Loaded onto gel with pZe ALP.

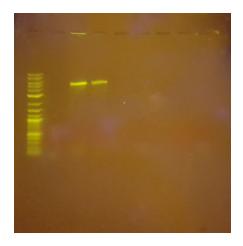


Gel order: pZeALP, TEV mid bb1, TEV mid bb2, ampR1, ampR2

Following PCRs were set up again:


pZE LSS-mKate (high copy) with primers pBadR & pBadF (colony PCR)

Colony 2 TEV mid with primers REA 41 & pZE pure-R



h1-h2-hc t1-tc-a1-a2-ac

NEW PCR FOR TEV MID COPY & HIGH COPY

h1-h1 (pBAD alp F and R) -hc-t1-t2

h1-h2 (LSS mkate with pBADf and pBADr) Later, this will be used as high copy backbone.

TEV mid nothing done, for verification.

Gel extraction for high copy backbone:

Conc. (ng/µl)	260/280	260/230
20.7	3.68	0.05

Gibson for high copy backbone and TEV protease:

7.5 µl Gibson mix

0.35 µl insert (TEV protease)

2.42 μl backbone (high copy)

Gibson product was transformed to DH5a PRO cells. Transformation was successful.

PCR was done to csREA20 with REA29&30 primers with two replicas, PCR cleanup and nanodrop was performed:

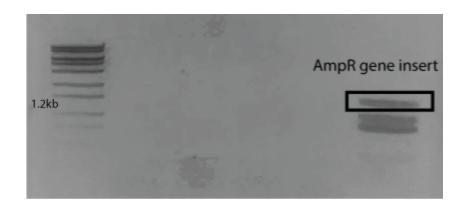
Sample	Conc. (ng/µl)	260/280	260/230
1	30.8	1.89	0.19
2	43.8	1.82	0.11

Restriction digestion of AmpR was performed with samples obtained from PCR cleanup. Both of the samples were used for digestion mixture since their concentrations were very low:

18 μl total DNA sample

0.625 µl AatII

0.625 µl SpeI


2.5 µl CutSmart

3.2 µl ddH₂O

Total mix: 25 µl

Gel Electrophoresis:

Expected length: 1.1 kb

Gel extraction was performed for AmpR digest

NanoDrop Analysis:

Sample	Conc. (ng/µl)	260/280	260/230
AmpR digest	5.9	2.08	0.01

Ligation with TEV mid and AmpR digest product:

TEV mid+amp (1:5)

2 μl T4 DNA ligase buffer

1 μl T4 DNA ligase

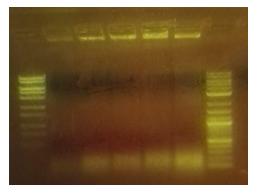
2.27 µl plasmid (TEV mid digest)

8.12 µl insert (AmpR)

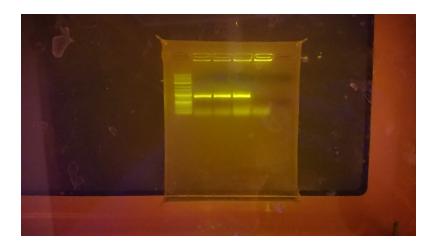
6.61 μl ddH₂O

20 µl total reaction mix Reaction time: 80 mins

Transformation of the ligation product to PRO DH5a was done. 3 colonies were selected and inoculated. Miniprep was done:

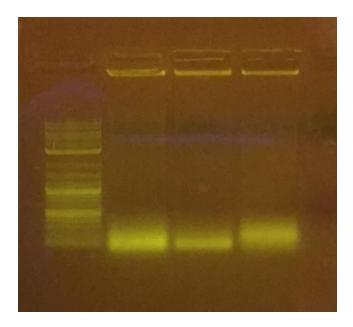

Sample	Conc. (ng/µl)	260/280	260/230
TEV Mid Amp Col1	91.1	1.96	1.79
TEV Mid Amp Col2	296.1	1.95	2.10
TEV Mid Amp Col3	235.5	2.02	1.83

Five colonies (6, 7, 8, 9, 10) from pZe-pBAD-TEV-Ag43-AmpR were chosen, seeded and left at 18°C shaker for three days.


Miniprep was done for colonies 9 & 10:

Sample	Conc. (ng/µl	260/280	260/230
Colony 9	112.1	2.02	1.58
Colony 10	40.1	1.89	0.75

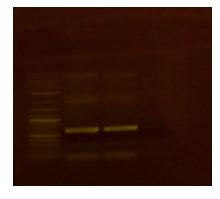
Colony PCR was done on the 5 selected (6-7-8-9-10) pZa-AmpR-TEV for verification. Annealing temperature was 58° C.


TEV-high copy colony 9 & colony 10 were selected for verification by colony PCR using Q5 Polymerase with two replicas.

Verified colonies were isolated from the overnight culture. Cell stocks were prepared.

TEV-mid construct PCR was done to col2 with Phusion Polymerase in two replicas. Gradient protocol 61-64°C was used. No bands were observed.

TEV-mid Colony PCR was done on 3 selected colonies

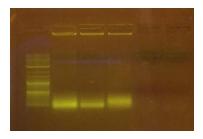


To amplify TEV-mid backbone for exchange of antibiotic resistance, PCR was done:

5 μ l BSCat PRO (5 μ M concentration) 5 μ l PBR_322_R (5 μ M concentration) 25 μ l Q5 master mix 0.3 μ l DNA 14.7 μ l ddH₂O

Annealing: 63°C

pZA-ALP was used as positive control


Restriction digestion to Col 2 of TEV mid with KpnI for verification:

0.25 μl KpnI 1 μl CutSmart 1.5 μl DNA sample (concentration: 298 ng/μl) 7.25 μl ddH₂O

10 μl total reaction mix

Duration of the digestion: 1.5 hour

PCR was done to TEV-mid col 2 to amplify backbone with different annealing temperature and GC enhancer with 2 replicas. 5 μ l GC enhancer for each reaction was added. Annealing temperature was 65-67°C. Control was put on 63°C.

PCR to TEV mid col2:

25 µl reactions were prepared

primers used: PureR & SY-CHL-FWD

4 tubes were prepared (3 duplicates and 1 control)

The duplicates were placed into the machine with a gradient, respectively 62°C, 64°C, 68°C

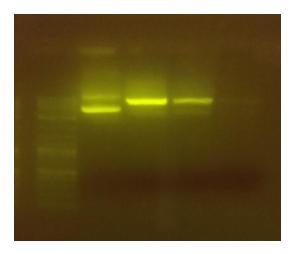
Annealing (30 seconds)

ii. tube 1: 64°C

iii. tube 2: 66°C

iv. tube 3: 68°C

v. pos. cont.: 62°C


Elongation: 4 minutes, Final Elongation: 3 minutes

vi. 26 cycles

vii. total time: 2:30

Gel Electrophoresis:

- b. PCR product (expected length: 6000 bp)
- c. Tube 1 & tube 2 were cut from the gel and stored at +4°C
- d. sample order: ladder-control-tube 1-tube 2-tube 3

Gel extraction was done. Both tube 1 & tube 2 samples were extracted in the same eppendorf.

Sample	Conc. (ng/µl)	A260/280	A260/230
TEV mid backbone	30.7	2.00	0.04

TEV mid PCR extraction was digested with SpeI & AatII:

25 μl total reaction mixture

18 μl DNA sample

2.5 µl CutSmart

0.5 μl SpeI

0.5 µl AatII

3.5 µl ddH₂O

duration: 90 minutes

PCR cleanup for the digestion mix:

mix was completed to 100 μl with ddH $_2{\rm O}$ 200 μl NT1 was added

Nanodrop:

Sample	Conc. (ng/µl)	A260/280	A260/230
--------	---------------	----------	----------

TEV mid digest	22.0	2.00	0.05
----------------	------	------	------

Ligation of TEV Mid & AmpR:

23.30 ng insert (3.95uL) 50 ng plasmid (2.37 uL) 2 uL T4 DNA Ligase Buffer 1 uL T4 DNA Ligase 10.78 uL ddH2O

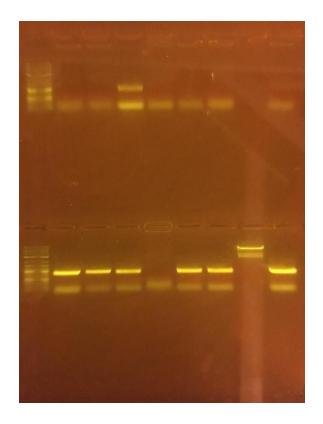
20 mins waited

Transformation of ligation product to PRO cells.

sfGFP (with mproD), TEV high, TEV mid amp, were prepared for sequencing.

TEV mid digestion for verification

- a. cut with SpeI
- b. was inconclusive, will be redone


РНОТО

Miniprep

a. TEV mid col 3

Sample	Conc. (ng/µl)	260/280	260/230
TEV mid col 3	135.9	2.06	1.94

TEV mid col 3 digestion was performed with SpeI.

- 1. pET22b sfGFP plasmid were inoculated for 12 hours and miniprep was performed
- 2. 25 µl of digestion was set up on each plasmid
- 3. $10 \mu l DNA \approx 1200 ng$ for pET22b sfGFP 6
- 4. 5 μl DNA ≈ 140 ng for pET22b sfGFP 3

Miniprep on sfGFP col 2 & col 4 and two pET22b duplicates

Sample	Conc. (ng/µl)	260/280	260/230
sfGFP col 2	254.9	2.04	2.05
sfGFP col 4	552.1	2.05	2.21

pZs-proD-col 2 and pZs-proD-col 4 were transformed to BL21 competent cells.

To create pZs pBAD TEV Ag43, we used a 3 part Gibson Assembly. We used PCR to add overhangs to the AraC TEV Ag43 cassette and the antibiotic resistance gene. We obtained the backbone containing the pSC101 low copy origin via PCR. Then we used gibson assembly to combine all three parts.