Name: Kennex, Jiayi Lan, Xuecheng Ye, Amirah, Rehmat

Date: 8/1/19

Goal:

- 1. Gel extraction of DinoIII
- 2. Transformation on mCherry
- 3. Colony pCR for pCB302 using gfp primers and primers 3 and 4
- 4. PCR of source DNA for pCB302 using gfp primers and primers 3 and 4
- 5. Run E-gel on gel extraction product
- 6. Restriction digest on RFP for ligation

Protocol:

Preparing, Loading, and Running a 1% Agarose Gel

Preparing

- 1. Added 1 g of Agarose in 100 mL of 1X TBE in an Erlenmeyer flask.
- 2. Heated until fully dissolved.
- 3. Added 10 µL GelRed Nucleic Acid Gel Stain when it cooled enough to touch.
- 4. Inserted casting tray.
- 5. Poured the agarose into the tray and placed the comb to create the wells
- 6. Gel solidified
- 7. Changed the orientation of casting tray so the rubber sides were not in contact with the sides of the system.
- 8. Poured in 1X TBE into the gel electrophoresis system to the fill line, making sure to submerge the gel.

Loading

- 1. Loaded 10 μL of the GeneRuler 1kb Plus ladder in the first well .
- 2. Loaded 30 µL of the digested DinoIII into third well.
- 3. Loaded 30 uL of digested RFP optimized codon into fifth well.

Running

1. Ran for 1 hour at 100 volts.

Results:

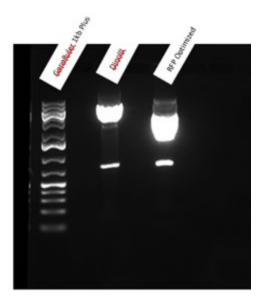


FIGURE 1. Gel image of digested RFP and DinoIII.

Lane 1: 1 KB Plus Ladder

Lane 2: Empty

Lane 3: Dino III with GFP digested with Xbal and BgIII

Lane 4: Empty

Lane 5: Codon Optimized RFP in pUC vector digested with Xbal and BgIII

Lane 1: 1 KB Plus Ladder

Lane 2: Codon optimized RFP gel extraction product

Lane 3: Dino III gel extraction product

FIGURE 3. E-Gel Image of Gel Extracted RFP and DinoIII.

Conclusion:

The concentrations were relatively low but when we ran the gel extraction products on an E-gel, the band for the Dinolll was relatively bright. We will redo the gel extraction for the RFP and perhaps combine multiple samples and do a precipitate reaction to increase the yield and then ligate using that.

Name: Kennex, Rehmat

Date: 8/1/19

Goal:

1. Gel extraction of DinoIII Miniprep #4 from 7/17 and RFP Codon Opt. Midiprep #3 from 7/24

Gel Extraction

QIAQuick Gel Extraction Kit Lot # 42141174

- 1. Ran a restriction digest on the targeted DNA part using restriction enzymes yesterday and ran an agarose gel for 1 hour before starting
- 2. Cut the targeted DNA sequence out using a razor blade, making sure to get as much DNA while limiting the amount of agarose extracted
- 3. Pre-weighed empty Eppendorf tubes before adding the gel exicisions.
- 4. Added the gel extracts to the Eppendorf tubes and weighed again.
- 5. Calculated the mass of the gel using the difference of the two measurements.
- 6. The DinoIII fragment weighed 560 mg and the RFP fragment weighed 380 mg.
- 7. Added 1680 μ L of Buffer QG to the Dino III fragment and 1140 μ L to the RFP fragment.
- 8. Incubated the tubes at 50° C for 10 minutes and vortexed every 2 minutes to help dissolve the gel
 - a. Checked to make sure the color of the mixture is yellow
- 9. Once dissolved, added 560 μL of isopropanol to the Dino III fragment and 380 μL to the RFP fragment and mixed.
- 10. Placed a QIAquick spin column in a provided 2 mL collection tube.
- 11. Added 700 μ L of the solution to the spin column at a time and centrifuged at 13,000 rpm for 1 minute and discarded the flow through. Repeated until all of the solution had ran through.
- 12. Added 500 μ L of Buffer QG to the spin columns to remove traces of agarose and centrifuged for 1 minute.
- 13. Added 750 µL of Buffer PE to the column to wash and centrifuged for 1 minute.
- 14. Discarded the flow through and centrifuged for an additional 1 minute at 13,000 rpm to remove residual buffer.
- 15. Placed the spin column in a clean 1.5 mL Eppendorf tube
- 16. Added 40 μ L of warmed Buffer EB to the center of the spin column, allowed to sit for 1 minute, and centrifuged for 1 minute.
- 17. Measured and recorded the concentrations.

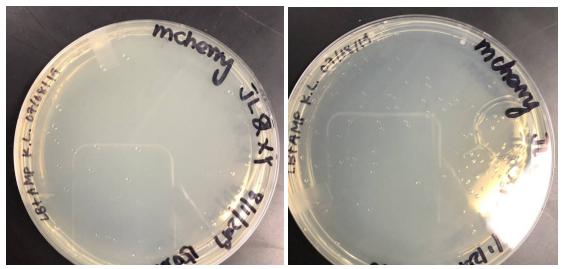
Dino III	40 ng/μL

RFP	5 ng/μL	
-----	---------	--

Name: Jiayi Lan and Xuecheng Ye

Date: 8/1/19

Goal:


1. Transformation of mCherry with One Shot™ BL21 Star™ (DE3) Chemically Competent E. coli

Protocol:

Transformation using One Shot BL21 Star (DE3) Cells

- 1. One vial of One Shot® cells was thawed on ice for one transformation.
- 2. Added 1 uL of 66ng/uL of DNA, in a volume of 5 μ L to the cells and mixed by tapping gently. Did not mix cells by pipetting.
- 3. Incubated the vial on ice for 30 minutes.
- 4. Heat shocked the cells by incubating the vial(s) for exactly 30 seconds in the 42°C water bath. Did not mix or shake.
- 5. Removed the vial(s) from the 42°C bath and quickly placed on ice.
- 6. Added 250 μL of pre-warmed SOC medium to the vial(s). (SOC is a rich medium; used proper sterile technique to avoid contamination.)
- 7. Placed in a shaking incubator, and shook the vial(s) at 37°C for 1 hour at 225 rpm. **Deviation**: 300 rpm.
- 8. Plated two different volumes of the transformation reaction onto LB plates containing the appropriate antibiotic for plasmid selection. Included 34 μg/mL chloramphenicol if using BL21(DE3)pLysS or BL21(DE3)pLysE cells. Selected two volumes ranging from 20–200 μL to ensure well-spaced colonies on at least one plate. We selected two volume, 100μL and 150μL. The remaining transformation reaction was stored at 4°C and plated out the next day, if needed.
- 9. Inverted the plates and incubated at 37°C overnight.

Results:

Conclusion:
The cells didn't grow.

Name: Amirah Date: 8/1/19

Goal:

1. Gel extraction of DinoIII Miniprep #4 from 7/17 and RFP Codon Opt. Midiprep #3 from 7/24

Protocol:

PCR Protocol

20 µL Reaction

- 1. Prepared a 20X PCR concentration cocktail with the following proportions: 7 μ L of diH2O, 10 μ L PCR Mastermix, 1 μ L of primer 3, and 1 μ L of primer 4.
- 2. Add 19 μ L of the concentration cocktail into a PCR tube along with 1 μ L of the source pCB302 DNA.
- 2. Place PCR tube in the thermocycler at the following settings:
 - 1. 95° C for 3:00 minutes
 - 2. 95° C for 1:00 minute
 - 3. 49° C for 1:00 minute
 - 4. 72° C for 1:00 minute
 - 5. 30X (Go to Step 2)
 - 6. 72° C for 5:00 minutes

Lid Temperature: 105° C

Colony PCR Protocol

20 µL Reaction

- 1. Prepared a 20X PCR concentration cocktail with the following proportions: 7 μ L of diH2O, 10 μ L PCR Mastermix, 1 μ L of the gfp rev primer, and 1 μ L of the gfp fwd primer.
- 2. Added 19 µL of the concentration cocktail into a PCR tube.
- 3. Using a 10 μ L micropipette, touched the tip onto the glycerol stock and put a piece of ice the PCR tube.
- 4. Placed PCR tube in the thermocycler at the following settings:
 - 1. 95° C for 3:00 minutes
 - 2. 95° C for 1:00 minute
 - 3. 47° C for 1:00 minute *Annealing temperature varies depending on primer
 - 4. 72° C for 1:00 minute
 - 5. 30X (Go to Step 2)
 - 6. 72° C for 5:00 minutes

Lid Temperature: 105° C

• Primers used

- o Pcb302 gfp
 - Forward
 - Reverse
- o Primer 4
- o Primer 3

Pcr tube number	Primer used	Dna used
1	Pcb302 gfp	A1 150ul LB
2	Pcb302 gfp	A1 col5 250ul
3	Pcb302 gfp	2B col5 Na ul ym
4	Pcb302 gfp	2b col3 200ul ym
5	Pcb302 gfp	1b col1 400ul ym
6	Pcb302 gfp	1A colb 150 lb
7	Pcb302 gfp	2a col3 300ul ym
8	Pcb302 gfp	2A col1 200ul ym
9	Pcb302 gfp	1B col1 300ul ym kana
10	Pcb302 gfp	1B col1 400ym
11	Pcb302 gfp	Source pcb302 plasmid 1
12	Pcb302 gfp	Source pcb302 plasmid 2
13	Primers 3&4	A1 150ul LB
14	Primers 3&4	A1 col5 250ul
15	Primers 3&4	2B col5 Na ul ym
16	Primers 3&4	2b col3 200ul ym
17	Primers 3&4	1b col1 400ul ym
18	Primers 3&4	1A colb 150 lb
19	Primers 3&4	2a col3 300ul ym
20	Primers 3&4	2A col1 200ul ym

21	Primers 3&4	1B col1 300ul ym kana
22	Primers 3&4	1B col 400ul ym
23	Primers 3&4	Source pcb302 plasmid 1
24	Primers 3&4	Source pcb302 plasmid 2

Name: Kennex Lam, Rehmat Babar

Date: 8/1/19

Goal:

1. Restriction Digest on

a. RFP Codon Opt. Midiprep #3 from 7/24
b. RFP Codon Opt. Miniprep #10 from 7/24
c. RFP Codon Opt. Midiprep #7 from 7/24

Protocol:

Restriction Digest Protocol

30 µL Fast Digest Restriction Digest

- 1. Prepare a Fast Digest concentration cocktail with the following proportions: 1 μL Xbal, 1 μL BgIII, 8 μL of 10X Fast Digest Buffer, and 5 μL of diH2O.
- 2. Add 15 μL of this cocktail to a clean 1.5 Eppendorf tube and then add 15 μL of DNA.
- 3. Incubate at 37° C for 30 minutes.

Results:

Will run a gel tomorrow before the gel extraction.