Laboratory Protocols

UM_Macau

iGEM_2019

Functional Test

Tyrosinase Activity Assay

- 1. Homogenize cells (8x10^8 cells) or tissue (50mg) with 500uL ice-cold Tyrosinase Assay buffer to perform lysis and keep on ice for 10 minutes followed by centrifugation at 10,000xg for 15 minutes at 4 degree.
- 2. Collect supernatant (lysate) and estimate protein concentration (BCA protein assay kit, protein concentration range from 1-2.5ug/ul. Dilute the lysate if needed using assay buffer)
- 3. Use the samples for activity analysis immediately, if that is not possible, store them at -80 degree.
- 4. Prepare 2 wells for each sample: Sample Background Control (SBC) and Sample (S). Add same volume of protein (2-25uL or 5-25ug) into each of these wells. For positive control: Add 2 uL of Tyrosinase positive control into the well and add 48uL of Assay Buffer.

For Assay Background Control: Add 50uL Assay Buffer to a well.

For Chromophore Standard Curve Generation:

	Concentration	Volume of Chromophore	Volume of Assay buffer
	(nmoL/well)	to add (uL)	to add (uL)
Α	0	0	100
В	2	5	95
С	4	10	90
D	6	15	85
Е	8	20	80
F	10	25	75

Reaction mix: (Prepare these immediately before adding it to wells)

	SBC mix	Reaction mix	
Assay Buffer	45uL	35uL	
Substrate	-	10uL	
Enhancer	5uL	5uL	
	Add SBC mix into	Add reaction mix into Assay	
	SBC wells	Background control, Samples and	
		Positive Control wells	

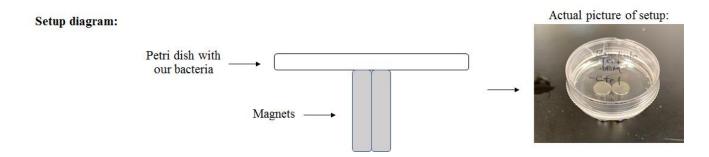
- 5. Mix them well.
- 6. Have the plate reader ready at 37 degree, at absorbance 510nm on kinetics made set to record absorbance every 30 seconds.
- 7. Measure at 30 second intervals for 10-15 minutes (for high tyrosinase activity) or for 60-90 minutes (for low tyrosinase activity).

Capture functional test

- 1. Picked bacteria colony and cultured overnight.
- 2. Induced 20 mL overnight culture with 1mM IPTG and incubated at 30 C shaking incubator. Centrifuged 10 mL and resuspended with Phosphate buffer. Then measure the OD.
- 3. Transfer 139 ul of resuspended bacteria samples for both negative and test groups. Put 10 ul of (5000U/mL tyrosinase) to get 333 U/mL (1:15 dilution) into the test groups. Put 10 ul of Phosphate buffer to the negative control.
- 4. Add 1 ul of 1.0%w/v FP-00552-2 Yellow fluorescent particle, 0.04-0.09 um size in 25C and mixing at 400 rpm for 6 minutes, 12 minutes ,24 minutes or 48 minutes or depending on the experiment objective. Samples were covered with aluminum foil to prevent exposure to light.
- 5. Centrifuged the solution at 3000xg for 3 minutes to pellet bacteria.
- 6. Collected supernatant 150ul and put on the 96 well plate. This should contain unbound nanoparticles.
- 7. Read the fluorescence signal using the filters 440 nm excitation and 480 nm emission.

Setup Diagram:

Test setup 96 well plate format


G	+CTRL											
	(Supern											
	atant)											
F	NC											
E	OPHA											
	(S)(A)											
D	OPHM											
	(S)(A)											
С	OPHT3											
	(S)(A)											
В	OPHT2											
	(S)(A)											
A	OPHT1	OPHT1	OPHT1(OPHT1								
	(S)(A)	(S)(A)	S)(A)	(S)(A)								
	1	2	3	4	5	6	7	8	9	10	11	12

(S) = Supernatant, (P) = Pellet, (IA) = Inactivated, (A)=Activated

<u>Notes for the setup:</u> Each constructs have three technical repeats for each timepoint group as shown in the format above. Supernatant samples were collected and measured the fluorescence amount using a microplate reader.

Magnetization assay

- 1. Pick bacteria colony and culture overnight
- 2. Induce overnight culture with 0.2% arabinose and continue incubating them at 37 degrees in the shaking incubator for 6-8 hours.
- 3. Add 20mM ammonium ferric citrate into the bacteria culture and incubate again in 37 degrees for 24 hrs
 - *Note: Negative control will not be incubated with ammonium ferric citrate
- 4. Centrifuge the bacteria culture and remove the supernatant
- 5. Resuspend the pellet with autoclaved Milli-Q water
- 6. Put the resuspended bacteria culture solution onto a petri dish and put the magnet under them as shown in the set-up below:

AgNP and ZnO E.coli survival test

- 1. Prepared an 5 mL overnight culture of our SANCE E.coli (BL-21 chassis) with ampicillin.
- 2. Diluted the overnight culture in 1:100 ratio in another 5 mL LB broth with ampicillin.
- 3. Prepared 5 different concentration of Zinc Oxide and Silver nanoparticles in LB broth solution. 0.5 mg/L, 1 mg/L, 20 mg/L, 40 mg/L and 60 mg/L.
- 4. Put 200 ul of LB broth with ampicillin in the blank groups.
- 5. Put 100 ul of LB broth with the Zinc Oxide and Silver Nanoparticle groups respectively.
- 6. Put 100 ul of the 1:100 bacteria LB Broth in the treatment.
- 7. Read initial OD600 absorbance values as initial time.
- 8. Incubated in 37 C shaking incubator and read absorbance values for 2 hrs, 4 hrs, 6 hrs, 8 hrs and 12 hrs. This is to check the cell viability after being exposed to toxic nanoparticles.

Setup Diagram

96 well plate format										
			ZnO		AgNP					
		1	2	3	4	5	6			
Blank	A	Repeat 1	Repeat 2	Repeat 3	Repeat 1	Repeat 2	Repeat 3			
0 mg/L	В	Repeat 1	Repeat 2	Repeat 3	Repeat 1	Repeat 2	Repeat 3			
0.25 mg/L	C	Repeat 1	Repeat 2	Repeat 3	Repeat 1	Repeat 2	Repeat 3			
0.5 mg/L	D	Repeat 1	Repeat 2	Repeat 3	Repeat 1	Repeat 2	Repeat 3			
10 mg/L	E	Repeat 1	Repeat 2	Repeat 3	Repeat 1	Repeat 2	Repeat 3			
20 mg/L	F	Repeat 1	Repeat 2	Repeat 3	Repeat 1	Repeat 2	Repeat 3			
30 mg/L	G	Repeat 1	Repeat 2	Repeat 3	Repeat 1	Repeat 2	Repeat 3			
	Н									