Laser Experiments

To obtain a biological QR code we came up with three plans depending upon the complexity and ease of use. The plans were as follows:

- Laser engraved agar plate
- Stamping
- Bio printing

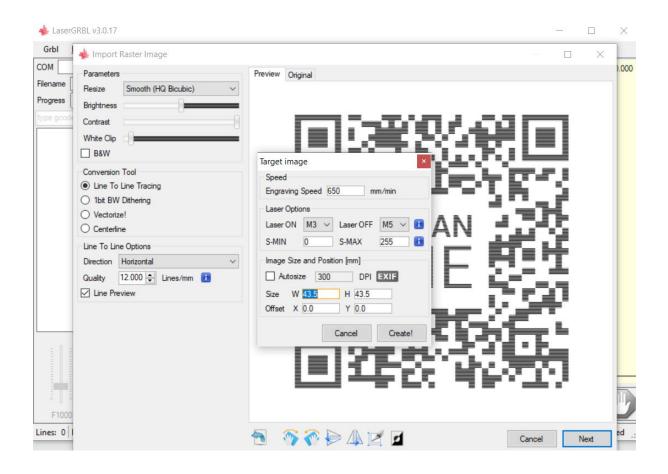
Prior to having our own 3D printer, it was necessary to come up with a contingency plan to have a proof of concept ready. To achieve this, we started off by using a 2D laser CNC machine, which later was also optimised for bio printing.

There were certain challenges to overcome while working with laser CNC. For the lack of 3D printer, we decided to do engraving as well as generating stamps for the stamping process using the CNC machine. We encountered the following challenges while working on these ideas:

- To determine the right combination of speed of axial movements and the intensity of laser.
- To come up with suitable media composition as to kill necessary bacteria but keep heat diffusion to a minimum.
- Determining the appropriate material for engraving stamps.

General Specification					
Brand	EleksMaker				
Model	EleksLaser A4 Standard				
Frame Material	Acrylic + Aluminium				
Max. Engraving Area	300 x 200mm / 11.81 x 7.87 inch				
Machine Size (L*W*H)	460x470x150mm / 18.11x18.50x5.91inch				
Certification	CE, FCC, FDA				
	Technical Parameters				
Control Board	EleksMana SE				
Communication Port	MircoUSB				
Stepper Motor	42H34S-1304A				
Power Input	AC100-240V				
Working Voltage	DC 12V				
Working Current	DC 5A				
Laser wavelength	400-450 nm				
Power	500 mW				
Supported Formats	jpg, bmp, svg, G-code				
Engraving Accuracy	0.01mm				
Support Systems	Win XP / 7 / 8 / 10				
Support Software	EleksCam, Candle, T2 Laser, GRBL Controller, LiteFire, etc.				
Engrave Mode	Photo, Word, Scan, Outline, Pixel Laser Engraving				

Before we go further here are the specs for our laser CNC machine


ENGRAVING THE AGAR PLATES:

For the testing, our wet team gave us a few agar plates with E. coli to overcome our first hurdle of determining the right combination of speed and intensity. Also, they made a special black agar in pursuit of making agar stamps.

link and pics

The Agar being transparent to a certain degree along with the see through disposable plates, we soon discovered that it wasn't necessary to consider the intensity of the laser as a variable parameter but rather we could make things works by controlling the "Engraving speed (speed of axial movements)" and "Quality (number of lines/traces per mm)" a feature from Laser GRBL opensource software to manipulate our results.

After performing a couple of experiments and realizing we were under equipped to have a spatial heat diffusion measurement in the agar plates, we thought of graphical extrapolation from the data we had to come up with an effective combination of speed and quality.

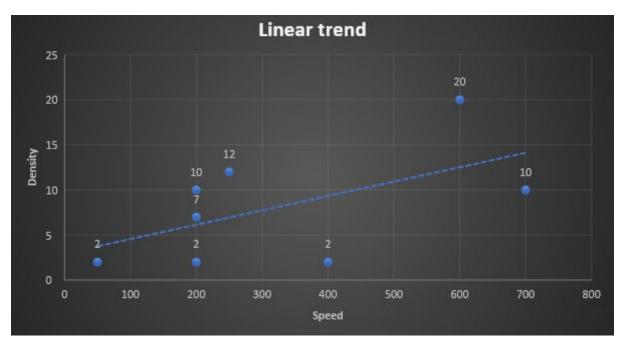
Exp. #	Agar	Container	Method	Laser Iterations	Bacteria	Results	Size [mm]	Speed [mm/min]	Density Lines [lines/m m] (1-20)
1	Clear	Plastic	Line To Line	1	E.Coli	No Effect	55x55	400	2
2	Clear	Plastic	Line To Line	1	E.Coli	No Effect	55x55	200	2
3	Clear	Plastic	Line To Line	1	E.Coli	Positive	40x40	200	10
4	Clear	Plastic	Line To Line	1	E.Coli	Bad Density QR	40x40	50	2
5	Clear	Thick Paper Stamp	Line To Line	1	E.Coli	No Effect	32x32	600	20
6	Clear	Thick Paper Stamp	Line To Line	1	E.Coli	No Effect	30x30	700	10
8	Clear	Plastic	Line To Line	1	E.Coli	Positive	30x30	200	7
9	Clear	Plastic	Line To Line	1	E.Coli	Scannabl e	30x30	250	12

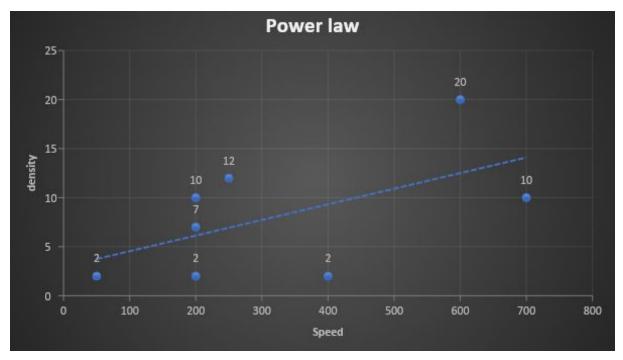
Following table represents the preliminary experimental data

Now for extrapolation we will only use speed and density(lines/mm)

_

Speed [mm/min]	Density Lines [lines/m m] (1-20)
400	2
200	2
200	10
50	2
600	20
700	10
200	7
250	12


Since we did not know the exact nature of heat diffusion in agar, we did three simulations based on three trends:


- Linear
- Power law

We skipped exponential trend since from Stephen-Boltzmann's law, we know that the net rate heat transfer between one radiating body and one absorbing body is given by

$$q = \sigma A_1 \varepsilon_1 (T_1^4 - T_2^4)$$

Thus, we can observe the trends graphically as follows:

From these graphs we were able to extrapolate a favourable thumb rule for clear agar plates which can be represented as

 $\frac{Speed}{Quality}$ 20.5

Exact values of speed and quality cannot be determined because of other variables like thickness of agar, constitution of media and size of the plate.

Conclusions:

The engraving sure did give positive results as follows but we also came understand a couple of drawbacks.

insert pics here

Drawbacks of this method are:

- Use of multiple strains on a same plate doesn't work.
- The QR code must be generated in a plate and then sealed off for containment.

MATERIAL TESTS FOR STAMPING:

To follow up with our second plan of stamping first we decided to engrave stamps using the laser engraver. To accomplish this we started to tests different materials with our CNC machine to find the right material for the stamps.

Materials	Speed (mm/min)	Density (lines/mm)	Туре	No of runs	Results	Comments
black divider film	600	20	L2L	1	failed bad	melting the material, nonlinear, bad resolution
rubber	200	12	L2L	1	miserable failure	laser has insufficient power to even etch the rubber surface
canvas square	50	NA	vector	1	no depth	paper on top, no good for stamping, no depth in engraving
cork coaster	2000	20	L2L	1	gift shop etching	burns quickly, very low resolution (crooked edges)
WOOD!!!	600	20	L2L	1	MAGNIFIQUE	good depth, high resolution, sharp edges

Hence, we decided to go with wood as a preliminary stamping material.

Testing different speed and density on Wood for depth and resolution of the stamps

Size (QR) (mm^2)	Speed (mm/min)	Density (lines/mm)	no. of laser runs	Results
20x20	600	20	1	Magnifique, less depth
25x25	500	20	1	good, less depth requires intense cleaning to be scanned
25x25	600	20	1	awesome, good depth clean edges perfect for stamping

But soon we realized that the soft wood we were using faced a few problems:

- The wood tends to bend after a couple of dips into bacterial solution
- The generated QR has low resolution
- Wood absorbing the solution can be critical to safety protocols

Next we moved to making stamps with black agar plates. Since its infusion with charcoal we though the heat diffusion would enhance the melting of the agar and provide us with good resolution and quick stamp build.

Size	Agar	Plate	Туре	Runs	Bacteria	Results	Speed	Density
30x30	Black	Plastic	Line to Line	1	E.Coli*	Kills but melts agar	250	12
30x30	Black	Plastic	Line to Line	1	E.Coli*	Melted agar	800	12
55x55	Black	Plastic	Line to Line	1	E.Coli*	No Effect	1000	12

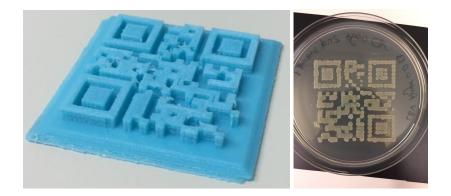
As we can see due to lower tuning capacity of our laser, we were unable to forge good quality black agar stamps.

Stamping

Since we settled on using wood as a favourable material for stamping, we started testing different speed and density on Wood chips for depth and resolution of the stamps

Size (QR) (mm^2)	Speed (mm/min)	Density (lines/mm)	no. of laser runs	Results
20x20	600	20	1	Magnifique, less depth
25x25	500	20	1	good, less depth requires intense cleaning to be scanned
25x25	600	20	1	awesome, good depth clean edges perfect for stamping

But soon we realized that the soft wood we were using faced a few problems:


- The wood tends to bend after a couple of dips into bacterial solution
- The generated QR has low resolution
- Wood absorbing the solution can be critical to safety protocols

Next we moved to making stamps with black agar plates. Since its infusion with charcoal we though the heat diffusion would enhance the melting of the agar and provide us with good resolution and quick stamp build.

Size	Agar	Plate	Туре	Bacteria	Results	Speed	Density
30x30	Black	Plastic	Line to Line	E.Coli*	Kills but melts agar	250	12
30x30	Black	Plastic	Line to Line	E.Coli*	Melted agar	800	12
55x55	Black	Plastic	Line to Line	E.Coli*	No Effect	1000	12

As we can see due to lower tuning capacity of our laser, we were unable to forge good quality black agar stamps. Meanwhile we received our 3D printer and hence we shifted from wood stamps to 3D printed pixelated stamps.

These 3D printed stamps were designed on open source software and used by the wet team for direct stamping and velvet replication techniques.

