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Introduction 

The following report is based on the study and preliminary findings about PPIX scale-up by the                

University of Calgary (UofC) iGEM team members, given to the University of Alberta iGEM team               

(UAlberta) for review and further analysis. This study being reviewed was created for a chemical               

engineering course term project and was based on the UAlberta iGEM 2018 project. The report given to                 

us from the modelling UCalgary subteam and addresses the scale-up of PPIX production, building on the                

University of Alberta iGEM 2018 project APIS (the Antifungal Porphyrin-based Intervention System).            

APIS aims to treat Nosema ceranae in Apis mellifera (Honey Bees) to decrease mortality rates due to                 

fungal infections. In the following report, the UAlberta team has reviewed the microbial process of PPIX                

production scale-up in Escherichia coli, detailing the microbial fermentation process; moreover, our            

recommendations address these issues rather than the reactor design and market business model. The              

UAlberta team is still interested in continuing the work on the APIS project to complement our 2019                 

project, the Beetector, offering a complete solution against Nosema ceranae to beekeepers.  

 

 Platform strain 

E.coli is a gram-negative facultative anaerobic bacteria; moreover, the strains being used by the              

University of Alberta iGEM team in 2018 were DH10B and BL21 DE3 (iGEM UAlberta). Not only was                 

E.coli chosen for its lab trained qualities and well-known description, a major advantage with this bacteria                

is the presence of effective efflux pumps, making it easier to obtain our product of interest (Turlin et al.                   

2014).  

In the UAlberta 2018, the heme biosynthesis pathway for the E. coli, chassis was genetically               

modified  to allow for the overproduction of PPIX (iGEM UAlberta). 



 

 

This was achieved by introducing a plasmid containing the genes for PPIX synthesis under strong               

constitutive promoters, independent of the endogenous heme synthesis pathway (iGEM UAlberta). The            



increase of PPIX would then be pumped out of the cell using the efflux pumps to be retrieved in the                    

supernatant, as the solubility of PPIX is 169 mg/L at 25 °C according to the Aquasol database by                  

Yalkowsky & Dannenfelser (1992).  

The University of Calgary report did not mention what strains of E. coli would be used in the                  

process.. The University of Alberta iGEM team decided to use a plasmid with the genes from the pathway                  

on it; however, the University of Calgary report did not mention if they would continue to do this or                   

choose a new mechanism for upscale.  

 

Fermentation conditions 

To maximize PPIX production the fermentation system needs to be optimized and scaled-up             

using multiple techniques and steps. Our first suggestion is to integrate the constructed plasmid into the                

bacterial chromosome to improve stability. After this has been done, the next step is to start an inoculum                  

train which will then be increased by 10-fold each time to achieve the correct inoculum for each different                  

fermenter.  

The preferable fermenter for scale-up is a stirred bioreactor operating in a fed-batch regime, as it                

will allow for rapid growth of cell density and inhibit the crippling of the cell (Lim & Shin 2013). In the                     

lab, pilot and industrial-scale production, temperature will be controlled to maintain a constant             

temperature of 37° C, the use of antifoam, pH controls of around 7, and having aeration below 10%. The                   

chosen parameters of antifoam, neutral pH and aeration below 10% aim to promote the growth of E.                 

coli. Its optimal growth pH is 7 and temperature of 37C. The antifoam is used to help stabilize the                   

solution in the fermenter, and aeration below 10% allows for the anaerobic metabolism of the E. coli to                  

take over.  

Low levels of aeration also allows for mixed acid fermentations, a natural metabolic pathway in               

E. coli that can produce hydrogen, ethanol, succinate, formate, and lactate due to anaerobic metabolism               



(Ciani et al. 2013). We will keep it in anaerobic conditions to make side products to keep an income of                    

money to help us buy more expensive growing supplies starting out. To prevent acetate production and its                 

inhibition of cell growth (Tripathi et al. 2009), a dissolved oxygen level of 30% may be sufficient (Phue                  

and Shiloach 2005). This also improves the carbon efficiency for the yield of PPIX, due to having higher                  

oxygen levels to convert it to anaerobic fermentation creating fewer organic side products (Phue and               

Shiloach 2005). 

The medium will be iron limiting to minimize the conversion of PPIX to heme. Our medium to                 

grow PPIX will be modeled after Citric Acid production in Aspergillus niger for the approximate iron                

levels of iron we will use for the medium (Najafpour 2007). This is because citric acid production also                  

contains a limit on iron being used in the medium (Najafpour 2007). All this can change though                 

depending on fermenting conditions that arise during scale-up.  

To avoid contamination, proper sterilization techniques will be used to ensure that the fermenter              

will only contain E.coli. From Marisch et al. mentioned strains of E. coli that were efficient at producing                   

proteins in fed-batch conditions (2013). The strains we recommend are BL21(DE3) due to its ability to                

produce more proteins; however, this strain can lose its plasmid to maintain growth if under stressful                

conditions (Marisch et al. 2013). 

In lab-scale production, the main concern is guaranteeing a sufficient carbon-nitrogen ratio to             

optimize growth; therefore, as reported by Wang et al., we suggest using a modified NBS medium II for                  

fed-batch culturing (2019). The NBS medium II contains, per litre, 7 g KH2PO4, 10 g K2HPO4, 7 g                  

(NH4)2HPO4, 0.5 g MgSO4· 7H2O, 30 mg CaCl2, 1 mg thiamine, 0.1% (v/v) trace element solution, 5 g                  

yeast extract, and 50 g glucose (Wang et al. 2019). 

This nutritional medium will allow the bacteria to grow and release the PPIX through the drug                 

efflux pumps into the supernatant, which will then be retrieved via centrifugation (Turlin et al.               



2014).With increase in PPIX production from our E. coli, our production will increase 10-fold until we                

reach 10 L, ending the lab-scale production. 

When moving to the pilot scale, the fermentation tanks used will range from 10 L (from the end                  

of the bench-scale) to 100 L. At the start of the pilot, we will use the aforementioned medium; however,                   

as the fermentation size increases, the media will be changed to be more cost-effective. To reduce                

production costs, we suggest substituting the NBS medium for waste products easily obtained. There will               

be a slow shift starting supplementing the NBS medium with at 20 L to using the waste products from                   

other facilities to start moving to the industrial scale.  

The carbon source for a more extensive operation could be Dried Distiller Grains with Solubles               

(DDGS), due to its protein, fat, and carbohydrate composition (Li et al. 2019) and, as nitrogen source, we                  

could use Brewer's yeast extract. This will be attainable and, as DDGS is the waste products of brewery                  

companies, would make PPIX production more cost effective.  

In industrial-scale, we will use 1000 L tanks will be used, and the size of the end tank will be                    

determined based on annual sales estimatives. The media used will be DDGS and Brewer’s yeast. All the                 

same controls and additives that were at the beginning of lab scale may have changed by this stage in                   

development, which will depend on how APIS is best produced moving up in scale. 

The University of Calgary report did not have an accurate upstream processing. The medium they               

were planning on using was RPMI 1640 medium, which is specific for mammalian cells rather than                

bacterial cultures. Hence, we decided to use glucose and yeast extract in our lab-scale instead. They also                 

intended to continue using pure glucose until the end of industrial scale. However, this would be                

extremely expensive - for example, Sigma Aldrich sells glucose for 338 CAD for only 25 kg (2019).                 

There was also no mention in the report on the inoculum train culture conditions to get to higher                  

commercial volumes when moving from lab-scale to pilot and eventually  industrial.  



Moreover, the UofC report did not mention the type of reactor operation they would use               

(fed-batch, batch). We recommend using a fed-batch operation mode. The report also did not define               

reactor sizes when transitioning from the various steps in production scale-up, what style of fermentation               

they would be using, controls and proper growth conditions. Their plan is to keep the cell in aerobic                  

growth.  

 

Downstream Processing (DSP) 

As PPIX is excreted through drug efflux pumps, it can be collected in the supernatant by                

separation (Turlin et al. 2014). Moreover PPIX is not soluble in the supernatant; therefore, more               

expensive or challenging DSP is not needed. However, there will be added expenses, such as cleaning out                 

antifoam and purifying the PPIX chemical that will be produced. 

It is challenging to determine the other steps of DSP at the current project development stage. The                 

simplest purification method is to turn the PPIX phase of the fermentation system into a dry chemical.                 

The beekeeper would then dilute it in sugar water to administer the drug to the hive. Dry products                  

typically have longer shelf-lives, which would make the storage and distribution of the final PPIX product                

easier. 

According to Sigma Aldrich, the storage temperature for PPIX needs to be between 2-8 degrees               

celsius; therefore, beekeepers of our product will need to keep it in the fridge at all times before use. As                    

mentioned above, we wanted our product to be a dry chemical and based on DrugBanks literature, PPIX                 

is in a solid state (2019). 

The by-products of Mixed Acid Fermentation are hydrogen, ethanol, succinate, formate, and            

lactate. These can  be sold off to help keep our profitability  (Ciani et al. 2013).  

The UofC report suggested using high-pressure homogenization to disrupt the cell; however, this             

would not be needed since PPIX is excreted from the cell and is in the supernatant. This would be a                    



needless, unnecessary, and expensive step. The report also mentions using an high-performance liquid             

chromatography (HPLC) column to collect the PPIX from the supernatant, but this also would not be                

needed since PPIX has a solubility of 169 mg/L at 25°C and can be easily collected by centrifugation                  

(Yalkowsky & Dannenfelser 1992).  
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