Software Documentation

iGEM SynShine

Aim

The software component is designed to complement the hardware and the mod-
eling sections of the project while linking it with the wet-lab component. It
provides a framework which aims to test the experimental data against the
mathematical model obtained and helps to refine and choose parameters which
make the model more robust for the given bacterial system. It can then be
extended to suit the needs of any such system provided that the differential
equations governing the mathematical model isn’t drastically altered. Thus, it
acts as a supplementary framework for the entire project.

1 Modeling Software

The modeling software consists of the following scripts which are used to initial-
ize bacterial conditions, run simulations, attain data points across the simulation
trajectory and plotting of data. The modelling software works best on a Linux
terminal, or a WSL2 terminal on a Windows machine*. * Each individual com-
ponent of the modelling script works independently irrespective of operating
system. The software is hassle-free on a Linux machine, post-installation of
numpy and matplotlib. On Windows, WSL2 is needed to run the bash script,
and the graphing script requires an additional Xorg server client to work on
Windows if the bash script is used.

1.1 Initialization Script

A bash script which also acts as the driver for the program works via the follow-
ing way: a parameters file contains user inputs for setting the initial parameters
of the system, for each of the interested variables and, with the required range
and precision. A Python3 script parses the input and generates the required
input files for the binary executable, thus generating all the required inputs
for simulation. The driver code also proceeds to run the simulation with the
co-culture model.



1.2 Simulation of the bacterial co-culture model

The binary executable is used to simulate the bacterial system over time. This
is done by intergrating the differential equations that govern the system, using a
Runge-Kutta 1 integrator a.k.a, Euler Integrator. The error introduced during
consecutive timesteps is of the O(At?). The differential equations which model
the bacterial system can be found on the modeling part of the Wiki. Euler’s
method for solving first order, first degree differential equations is a well known
simplistic system which can be used to approximate the solution to a system
of differential equations. In this method, we assume a small time-step within
which we approximate the variable(s) to change by the amount equal to the first
degree derivative multiplied with the time-step. In case of higher Runge-Kutta
methods, we employ similar techniques to change the variables using higher
degree derivatives. Given the first degree nature of the differential equations
employed to model the bacterial system, Euler’s method was used to model the
change in variables.

1.3 Graph Plotting

A Python3 script is used to generate graphs for the data obtained from each of
the simulations. Additional packages needed: numpy, matplotlib.

2 InFORM: Interface For OptoMatic Response
Management

Our hardware’s interface to our software us through an Arduino, which collects
the various experimental parametres from the sensors. Here is where InFORM
comes in:its aim is to convert responses produced by the Arduino module into
a well organised format, so that it can be used for data visualisation. This
allows the module to communicate efficiently with the user and provides a way
to obtain the values of the various experimental parameters.

3 References

e Ascher, Uri M.; Petzold, Linda R. (1998). Computer Methods for Ordi-
nary Differential Equations and Differential-Algebraic Equations. Philadel-
phia: Society for Industrial and Applied Mathematics. ISBN 978-0-89871-
412-8.

e Owen, A.B. (1992). ”Orthogonal arrays for computer experiments, inte-
gration and visualization”. Statistica Sinica. 2: 439-452

e Salsa, Sandro. Partial Differential Equations in Action: from Modelling
to Theory. Springer, 2016.



