Name: Chiara Brust, Krithika Karunakaran

Date: 8/6/19

Goals:

- 1. Heat kill on restriction digest of Dino III mini preps from 7/17/19 samples #1-#10
- 2. Gel extraction on linearized Dino III with GFP
- 3. Transform Dino III with CO RFP into E. Coli OneShot chemically competent cells

Name: Chiara Date: 8/6/19

Goal:

1. Heat kill on restriction digest of Dino III mini preps from 7/17/19 samples #1-#10

Protocol:

Heat Kill

1. Placed digested DNA in water bath at 65° C for 20 minutes

Name: Chiara Date: 8/6/19

Goal:

1. Gel extraction of linearized DinoIII with GFP minipreps from 7/17/19 samples # 1-10

Protocol:

Preparing, Loading, and Running a 1% Agarose Gel

Preparing

- 1. Added 1 g of Agarose in 100 mL of 1X TBE in an Erlenmeyer flask.
- 2. Heated until fully dissolved.
- 3. Added 10 µL GelRed Nucleic Acid Gel Stain when it cooled enough to touch.
- 4. Inserted casting tray.
- 5. Poured the agarose into the tray and placed the comb to create the wells
- 6. Gel solidified
- 7. Changed the orientation of casting tray so the rubber sides were not in contact with the sides of the system.
- 8. Poured in 1X TBE into the gel electrophoresis system to the fill line, making sure to submerge the gel.

Loading

- 1. Loaded 5 µL of the GeneRuler 1kb Plus ladder in the first well .
- 2. Loaded 25 μ L of each sample including 5 μ L of loading dye, and skipped every other lane

Running

1. Ran for 1 hour and 15 minutes at 94 volts.

Gel Extraction

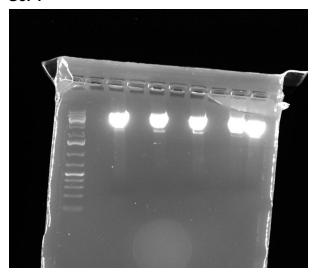
QIAQuick Gel Extraction Kit Lot # 42141174

- 1. Ran a restriction digest on the targeted DNA part using restriction enzymes yesterday and ran an agarose gel for 1 hour before starting
- 2. Cut the targeted DNA sequence out using a razor blade, making sure to get as much DNA while limiting the amount of agarose extracted
- 3. Pre-weighed empty Eppendorf tubes before adding the gel exicisions.
- 4. Added the gel extracts to the Eppendorf tubes and weighed again.
- 5. Calculated the mass of the gel using the difference of the two measurements.
- 6. The DinoIII fragments weighed _____ mg.
- 7. Added 3 times of the weight of the gel of Buffer QG (ex if gel weighs 100 mg, add 300 µL of Buffer QG).

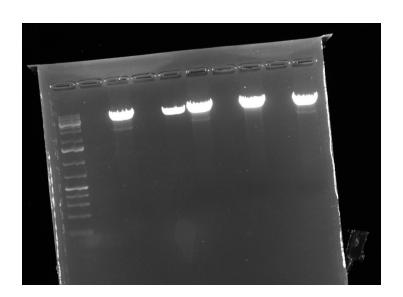
May have to transfer to a 15 mL falcon tube if the volume exceeds 1.5 mL

- 8. Incubated the tubes at 50° C for 10 minutes and vortexed every 2 minutes to help dissolve the gel
 - a. Checked to make sure the color of the mixture is yellow
- 9. Once dissolved, added 1X of isopropanol to the Dino III fragment. (if the gel weighs 100 mg add 100 μ L).
- 10. Placed a QIAquick spin column in a provided 2 mL collection tube.
- 11. Added 700 μ L of the solution to the spin column at a time and centrifuged at 13,000 rpm for 1 minute and discarded the flow through. Repeated until all of the solution had ran through.
- 12. Added 500 μ L of Buffer QG to the spin columns to remove traces of agarose and centrifuged for 1 minute.
- 13. Added 750 µL of Buffer PE to the column to wash and centrifuged for 1 minute.
- 14. Discarded the flow through and centrifuged for an additional 1 minute at 13,000 rpm to remove residual buffer.
- 15. Placed the spin column in a clean 1.5 mL Eppendorf tube
- 16. Added 40 µL of warmed Buffer EB to the center of the spin column, allowed to sit for 2 minutes, and centrifuged for 1 minute.
- 17. Measured and recorded the concentrations.

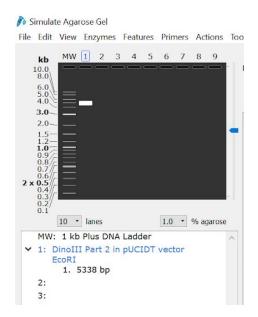
Results:


Gel 1 Key

Lane #	Sample
1	1 Kb Plus DNA MW ladder
2	Blank
3	1
4	Blank
5	2
6	Blank
7	3
8	Blank
9	4
10	5


Gel 2 Key

Lane #	Sample
1	1 Kb Plus DNa MW ladder
2	Blank
3	6
4	Blank
5	7
6	8
7	Blank
8	9
9	Blank
10	10


Gel 1

Gel 2

Expected Results:

DNA Concentration

Sample	[DNA] (ng/μL)	260/280
1	1.1	2.444
2	.55	3.667
3	.45	4.500
4	05	.2500
5	.55	3.667
6	.40	4.000
7	15	1.000
8	.45	4.500
9	.55	2.750
10	.15	

Conclusion:

The gel extractions were not successful.

Name: Krithika Karunakaran

Date: 8/6/19

Goals:

1. Transform Dino III with CO RFP from 8/2/19 ligation into E. Coli OneShot chemically competent cells

Protocol:

Heat Shock Transformation

- 1. OneShot chemically competent cells were thawed on ice
- 2. 2 µL of Dino III with CO RFP was added into competent cells
- 3. The cells were incubated on ice for 35 minutes.
- 4. After the ice incubation, the samples were placed into a 42° C water bath for 30 seconds.

Transformation Plating

- 5. Immediately after the heat shock, 250µL of SOC medium was added to the sample
- 6. The samples were placed in a 37° C shaking water incubator for 1 hour at 200 rpm.
- 7. After shaking for 1 hour, 150 µL of the solution was streaked onto an ampicillin plate
- 8. The plates were then placed in the incubator at 37°C for at least 24 hours.