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Abstract

Cystic fibrosis(CF) is a progressive genetic disease that, through
the production of abnormally thick mucus, causes degeneration of lung
conditions and induces the proliferation of multidrug resistant bacte-
rial strains (MRBS). The combination of treatments with antibiotics
and mucolytics has become an alternative for treatements against P.
aeuroginosa, an opportunist pathogen that grows in the respiratory
tract of CF patients and has become their principal cause of death.

We present a conceptual pipeline for the discovery of antibiotics
using a variety of whole-cell biosensors that, when co-cultivated with
secondary metabolite producers, sense the presence of antibiotics and
the possible chemical identification of such compounds, using a mi-
crofluidic system coupled to a mass-spectrometer; as well as a new
treatment using a neuraminidase as a mucolytic to reduce the viscos-
ity of mucines in CF patient’s lungs, .
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1 Mathematical Model
Designing synthetic biological circuits using genetic elements has become a
research field for developing novel biochemical sensors. Specifically Bacterial
cell based biosensors have been studied for the environmental monitoring,
clinical diagnostics and drug discovery. One of the main challenges for this
biosensors to meet real-life applications is the low sensibility and deficient
detection limits.

The rise of multiple antibotic resistant bacteria and the evident crisis
in drug discovery has become one of the main challenges in human history.
Traditional screening not only takes longer times, from years to decades, but
often fails to discover novel biomolecules. Bacterial biosensors have provided
a novel benchmark for the screening of secondary metabolites producers,
boosting the discovery of antibiotics and broadening the spectrum of the
latter. One of main aspects that should be considered for the development of
novel antibiotic biosensors is the sensibility, since they can only work properly
below the minimum inhibitory concentration.

Our project consists of a series of engineered multi-layered transcriptional
amplifiers that sequentially increases the output expression level of a GFP
reporter protein by the presence of an antibiotic belonging to a specific mech-
anism of action (MOA) in order to enhanced the process of drug discovery
and bacterial screening.

Modelling Biological systems has become an area of interest for multidis-
ciplinary areas of science, medicine and engineering. Mathematical models
allow to understand and predict the behavior of complex systems using sim-
ple concepts. Bacterial bio-sensors can be divided into three modules, the
first comprising a sensing module that recognizes the external signal and
transduces into a transcriptional output, the computing module that mod-
ulates the transduced sensor signal and the output module which executes
the physiological output response. In this project, we develop mathematical
models for the engineered multi-layered transcriptional amplifiers which acts
as a computing module using both exact deterministic differential equations
and stochastic simulations to provide a proof of concept for the amplification
signal of the antibiotic biosensor.

The structure of the following sections goes as follows: First we derive the
mathematical equations for an already characterized heavy metal biosensor
consisting of a constitutive promoter expressing a repressor protein inhibiting
the later expression of a reporter gene. Then we will consider the effect of
adding a mono-layer orthogonal transcriptional amplifier to the signal am-
plification. After that we will extrapolate this same models to our antibiotic
biosensor.
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1.1 Heavy Metal biosensor without cascade amplifica-
tion

Figure 1: Heavy Metal Biosensor without cascade amplification

The first system to be modeled consist of a two module biosensor ( Sens-
ing and Output module) for detecting heavy metals previously characterized.
The sensing module is formed by a constitutive promoter that expresses a
represor protein. In the absence of heavy metal the repressor protein inac-
tivates the output module consisting on a second promoter upstream to a
gfp gene by binding to this regulatory region. Some of the requirements for
this system to work correctly is a weak promoter such that in the presence
of heavy metal inducer the gfp signal can be turned on efficiently. Another
important requirement is that the arsenic-repressor interactions be stronger
than the promoter-repressor in order to overcome such inhibition and lower
the detection limits of the heavy metal.

The system of differential equations of the system under study is:

dR(t)

dt
= α0 + k−1C1(t) + k−2C2(t)−R(t)(δR + k1P (t) + k2I(t)) (1)

dC1(t)

dt
= k1R(t)P (t)− k−1C1(t) (2)
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dP (t)

dt
= −k1R(t)P (t) + k−1C1(t) (3)

dI(t)

dt
= k−2C2(t)− I(t)(k2R(t) + δI) (4)

dC2(t)

dt
= k2I(t)R(t)− k−2C2(t) (5)

dG(t)

dt
= β0 + β1P (t)− δGG(t) (6)

Notice that in a chemical equilibrium in (2), the the rate of Repressor-
Promoter formation is equal to the rate of dissociation of the later and
moreover dP (t)

dt
= −dC1(t)

dt
. This processes of binding are know to happen

at short life times so that an equilibrium between Repressor-Promoter is
established so quickly so that their concentrations don’t change over time.
Therefore a steady state approximation can be proposed. The chemical equi-
librium constant k−1

k1
= RP

C1
= Keq1 is obtained directly from the steady state

assumingdC1(t)
dt

= 0 . Therefore in chemical equilibrium the terms for pro-
moter occupancy vanish and the differential equation simplifies to:

dR(t)

dt
= α0 + k−2C2(t)−R(t)(δR + k2I(t)) (7)

dI(t)

dt
= k−2C2(t)− I(t)(k2R(t) + δI) (8)

dC2(t)

dt
= k2I(t)R(t)− k−1C2(t) (9)

dG2(t)

dt
= β0 + β1P (t)− δGG(t) (10)

We can repeat the same process for the formation of inhibitor repressor
complex, assuming a steady state for the binding of Inducer to the Repressor
Protein. Setting dC2(t)

dt
= 0 . We obtain a chemical equilibrium constant

directly from this assumption k−2

k2
= IR

C2
= Keq2, Once again some terms are

cancelled out and the system of differential equations simplifies to:

dR(t)

dt
= α0 − δRR(t) (11)

dI(t)

dt
= −δII(t) (12)
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dG(t)

dt
= β0 + β1P (t)− δGG(t) (13)

The analytical solutions of R(t) and I(t) are R(t) = α
δR

(1−e−δRt)+R0e
−δRt

and I(t) = I0e
−δI t.In steady state R becomes the rate of basal expression and

degradation dilution and I becomes zero Rss = α
δR
. Assuming that the rate

of basal expression is approximately zero the last equation becomes

dG(t)

dt
= β1P (t)− δGG(t) (14)

Knowing k−1C1

k1R
= P and k−2C2

k2I
= R therefore P ∝ I up to an arbitrary

constant P (t) = KI(t)

dG(t)

dt
= β1KI(t)− δGG(t) = β1KI0e

−δI t − δGG(t) (15)

Using the Laplace Transform L {dG(t)

dt
} = L {β1KI0e−δI t − δGG(t)} and

assuming the GFP is initially zero we obtain .

G(s)(s+ δG) = β1KI0
1

s+ δI
(16)

G(s) = β1KI0
1

(s+ δI)(s+ δG)
(17)

Using partial fractions we obtain

G(s) = β1KI0
1

(s+ δI)(s+ δG)
(18)

G(s) =
β1KI0
δG − δI

(
1

s+ δI
− 1

s+ δG
) (19)

G(t) =
β1KI0
δG − δI

(e−δI t − e−δGt) (20)

1.2 Heavy Metal biosensor without cascade amplifica-
tion

However, this approximations do not satisfy the induction properly, since
the expression depends linearly to the initial concentration of inductor, Even
though, this model allow us to understand the kinetic behavior of the system.
For a better explanation of the induction a simple empirical equation can be
obtained by setting the promoter vacancy as O(R) = P (t)

P (t)+C1(t)
= Keq1

R(t)+Keq1
.
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Figure 2: Comparison between Numerical Solution and Analytical Solution

However we are interested on the effect of the inducer on the expression
of GFP therefore we can change the promoter de-repression(induction) as
O(I) = I(t)

I(t)+K
For experimental purposes I(t) can be considered constant

at all time, that is, the degradation rate of I(t) is small so that dI(t)
dt

= 0
and δI = 0 . The expression of can be adjusted to a Hill-Langmuir function
of induction by inserting a parameter n known as the Hill parameter which
allows the tuning and sensibility of induction curves. In

In+Kn . The differential
equation for the expression of Gfp is:

dG(t)

dt
= β0 + β1

In

In +Kn
− δGG(t) (21)

Gss =
βT
δG

In

In +Kn
(22)

1.3 Heavy Metal biosensor with a multilayer- orthogo-
nal transcriptional amplifier

Multi-layer orthogonal transcriptional amplifier have proved to amplified con-
siderably the signal output lowering the detection limits for sensing appli-
cations. The system of differential equations for a monolayer- orthogonal
transcriptional amplifier consisting of a dimer activator previously studied
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Figure 3: Numerical Solution of system of differential equations without
cascade amplification

integrates the following terms.

dHR(t)

dt
= β0 + β1PA(t) + k−3H2(t)−HR(t)(δHR

+ k3HS(t)) (23)

dHS(t)

dt
= β0 + β1PA(t) + k−3H2(t)−HS(t)(δHS

+ k3HR(t)) (24)

dH2(t)

dt
= k3HR(t)HS(t)− k−3H2(t) (25)

dPB(t)

dt
= −k4H2(t)PB(t) + k−4C3(t) (26)

dC3(t)

dt
= k4H2(t)PB(t)− k−4C3(t) (27)

dG(t)

dt
= γ0 + γ1PB(t)− δGG(t) (28)

For a bi-layer biosensor the mathematical approach for establishing the
differential equations is the same

dHR(t)

dt
= β0 + β1PA(t) + k−3H2(t)−HR(t)(δHR

+ k3HS(t)) (29)
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Figure 4: Monolayer orthogonal Amplifier

dHS(t)

dt
= β0 + β1PA(t) + k−3H2(t)−HS(t)(δHS

+ k3HR(t)) (30)

dH2(t)

dt
= k3HR(t)HS(t)− k−3H2(t) (31)

dPB(t)

dt
= −k4H2(t)PB(t) + k−4C3(t) (32)

dC3(t)

dt
= k4H2(t)PB(t)− k−4C3(t) (33)

dE(t)

dt
= γ1PB(t)− δGE(t)− k5E(t)Pc(t) + k−5C4(t) (34)

dC4(t)

dt
= k5E(t)PC(t)− k−5C4(t) (35)

dPC(t)

dt
= −k5E(t)PC(t) + k−5C4(t) (36)

dG(t)

dt
= ε1PB(t)− δGG(t) (37)
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Figure 5: Bilayer orthogonal Amplifier

Instead on trying to find the analytical solutions of the systems of dif-
ferential equations. We are now interested in comparing the biosensor with
and without a multilayer- orthogonal transcriptional amplifier under same
circumstances.

Using numerical methods, we solve the system of differential equations
applying the same parameters in order to demonstrate as a proof of concept
the signal amplification when a multilayer orthogonal transcription amplifier
is implicated on the modulation of signal. Even though we do not implicitly
determined the sigmoidal behaviour in the differential equations, nevertheless
we still observe this behaviour for the bilayer and trilayer amplifier. This is
an intrinsic behaviour of the system. As it is shown a gain in signal is
obtained when the number of layers is increased however a Horizontal scaling
towards higher concentrations are observed. Therefore some other aspects
should be considered in the design of a genetic switches. These aspects are
characterized in the Hill equation and are further discussed on the section:
Response curve-based tuning process for antibiotic biosensor.
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Figure 6: monolayer orthogonal Amplifier Numerical Solution of system of
differential equations

1.4 Response curve-based tuning process for antibiotic
biosensor

During the last decade, efforts have been made in order to comprehend re-
sponses of cellular systems in order to tune the rate of response of such
systems. That is, given an input, been able to control the rate of change of
an output. Some of the main aspects under study are: How can the shape of
the response curve can be altered? How can we mathematically describe such
ligand specific behaviour? In the following section we review some mathe-
matical aspects of a semi-empirical formula know as Hill-Langmuir Function.
This equation has proof to adjust to numerous biological systems where an
input-output response is involved. Therefore understanding the parameters
of this equation and how experimentally it is possible to modify them is vital
for our project in order to design a genetic circuit capable of detecting low
concentrations of antibiotics

The Hill Equation
The Hill Equation is an experimentally equation that refers to occupancy

of macro-molecules. It expresses the fraction of molecules bonded as a func-
tion of ligand. Depending on the process, that is, if the ligand acts as an
inducer (I) or as a repressor (R) the Hill function takes one of the following
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Figure 7: Bilayer orthogonal Numerical Solution of system of differential
equations

forms:
O(I) =

In

In +Kn
(38)

O(R) =
K

Rn +Kn
(39)

The rate of change of a generic promoter specific ligand transcription
under induction is therefore

df

dt
= α0 + α1

In

In +Kn
(40)

The parameters K and n, not only are able to adjust the fitting to a broad
of experimental data but also have a significant biological meaning. The
parameter K is the Hill constant and is related to the dissociation between the
ligand and the biomolecule, it is equal to to the ligand concentration where
half of the binding sites are occupied. On the other hand the parameter n is
known as the Hill parameter. It is related to the cooperative binding, that
is the binding affinities when two or more ligands bind to the biomolecule of
interest and how this process is enhanced or reduced. An important result
of cooperative binding is steepness and sensibility. The higher the n the
steeper the response curve and the more sensible to input changes the system
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Figure 8: Cascade Amplification

becomes. For induction response systems β0 is the basal expression and β1
is the maximum additional production rate under induction effects.

Therefore designing a biosensor with such cooperative in order to be able
to detect small concentrations of antibiotics due to minimal inhibitory con-
centrations and being able to generate an output signal as fast as possible
is an important task for our project. On the next sections we will discuss
some ways to transform the sigmoidal response curves and how this knowl-
edge guided the construction of the multilayer- orthogonal transcriptional
amplifier.

Steepness:
Tuning the Hill coefficient n has a direct effect on the steepness of the

response curve. In the limit where n tends to infinite the curve becomes a
step function. Therefore having a switch like steady state response curve is
synonym of a ultra sensitive process. For transcription of a reporter gene this
is related to the participation of multiple transcription factors therefore the
first layer of the transcriptional amplifier included the combination of HrpR
and HrpS, are two proteins structurally related to the enhancer- binding
proteins and acts as a two component regulatory system. Therefore using
this system we increase the sensibility of our biosensor.

Vertical Shifting:
Vertical shifting is generated when a constitutive output is found on the

system. The constitutive expression of a promoter is directly expressed on
β0 which has units of Concentration s−1. For designing a biosensor that only
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Figure 9: Bilayer orthogonal Amplifier

expresses a signal output under the presence of antibiotics with a specific
mechanism of action and be strongly repressed otherwise it is important to
choose such promoters that have β0 almost zero. For the specificity of the
needed promoters, we chose to work with ypuA, fabHB, yorB and helD.

Horizontal scaling Horizontal Scaling is directly related to modifying the
Hill constant K . As mentioned above, this constant is related to the efficiency
of binding of the ligand. Since the Hill constant is equal to the concentration
of the ligand where half of the binding sites are occupied the smaller this
constant the lower the amount of ligand necessary to turn on the output
signal. For improving the detection limits of biosensors it is an important
aspects to design systems which reduce as much as possible this constants.
For our project lowering as much as possible the effective ligand concentration
in order to detect an output signal is necessary since there is an intrinsically
disadvantage of using bacteria biosensors because the inhibition of growth
above the MIC. Xinyi Wan et al. reported values of K for a double layer
biosensor (RS-E11) of 0.065 (uM) and for a double layer biosensor (RS-Rin
A) of 0.052 uM approximately, therefore both systems have the parameter K
to detect up to 10 nM of Heavy Metals which provides a useful platform for
working with antibiotics.

Leakage:
Referring to an up-regulated process(induction) leakage denotes the frac-
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Figure 10: Steepeness

tion of signal that is always activated and cannot be repressed under any
circumstance. Therefore under the absence of input there will be a remain-
ing output. This phenomena is characterized by vertical shifting without
affecting the maximal output. Mathematically this is represented by the
simple relation β0 + beta1 = constant . Experimentally tuning this effect is
not well understood but it involved both the presence of a basal transcription
and a induction transcription.

Vertical extension :
Vertical extension or amplified signal output is characterized by an in-

crease in the output signal maintaining fixed the low end level. The pa-
rameter beta1 can be seen as a signal amplitude over time. Increasing b1
significantly increases the output signal. For up-regulated systems this can
be achieved by increasing the probabilities of binding by transcription factors
that bind the RNA polymerases.

In this case some fundamental factors that increase the output signal
of the amplification cascade would be the presence of proteins such as hrpR
and hrpS, with a transcriptional binding function. Sigma factors are proteical
subunits of bacterial RNA polymerases that allow the specific determination
of promoter DNA binding and an efficient transcription. Therefore the use
of a Sigma factor in the second layer of the cascade provides a β1 of 61119
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Figure 11: Vertical shifting

(a.u.) in contrast the (RS-RinA) bilayer amplifier that has a β1 of 59252
(a.u). Therefor the use of a (RS-S11) assures us a better amplification of the
signal.

Mathematical equations are powerful tools for explaining biological phe-
nomena. Simple mathematical descriptions such as the Hill Langmuir equa-
tion, characterizes by simple parameters should be considered on the design
of genetic circuits with sensing applications. Mathematical knowledge and
biological implications of simple parameters allow us to improve the design of
a multilayer-orthogonal transcription amplifier, allowing us to select biologi-
cal parts that increase the steepness of our signal output reduce the vertical
shifting and leakage, increase the horizontal scaling and vertical extension of
our response curves. Finally, we would like to mention the huge impact our
mathematical modelling had on the design of our genetic circuit, because it
provided us the knowledge in order to decide which elements include in our
transcriptional amplifier cascade, changing our vision and defining important
elements of the wet lab work.
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Figure 12: Horizontal scaling

1.5 Inducible expression in E. coli T7 System for the
production of Sialidase mucolytic

Cystic fibrosis(CF) is a progressive genetic disease that, through the pro-
duction of abnormally thick mucus, causes degeneration of lung conditions
and induces the proliferation of multidrug resistant bacterial strains (MRBS).
Mucolytic agents have proved to increase the effectiveness of cough, therefore,
a treatment combining antibiotics with mucolytics is a promising strategy for
improving the health conditions in CF patients. The main components of the
mucus are the mucins; proteins which present a high amount of sialic acid
due to the frequent infections patients are exposed to, Therefore we choose
an enzyme capable of breaking such residues; the neuraminidase from Mi-
cromonospora viridifaciens . We decided to implement a super-folding green
fluorescent protein (sfGFP) because of its secretory activity. This constructs
are under the control of a T7-LacO promoter and C-terminal 6His-tag, which
will facilitate the recovery of the sialidase from the medium. In this section,
we develop a mathematical model for the T7-LacO promoter and the secre-
tory activity of the SfGfp.

In a T7 express strain, a lacI gene constitutively expresses a repressor
protein which represses the lac Operon. Moreover, a RNA polymerase gene is
inserted into the lac Operon on the E. coli chromosome and is expressed under
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Figure 13: Leakage

the control of the lac promoter. Therefore, under the absence of IPTG, there
is a strong repression of T7 RNA polymerase and only leaked expression is
maintained. The lac Operon consist of three genes, the gene lacZ that codes
for a β galactosidase ,the gene lacY that codes β galactosidese permease
and the gene lacA that codes for a β galactoside transacetylase. Unlike
lactose, IPTG cant be metabolized into allolactose but directly binds the lac
repressor. Thus IPTG induces the expression of lac operon. Additionally, a
positive feedback is generated by β galactosidese permease which transport
the external IPTG to the citosol. Another consideration for the mathematical
model is that lac repressor is able to repress the expression of genes regulated
by the T7 promoter on the plasmid. Considering a chemical equilibrium
between the binding of the repressor to the promoters R + P −−⇀↽−− RP we
have that the fraction unrepressed is O(R) = P (t)

P (t)+RP (t)
= K

R(t)+K
. The

transcription lacY and T7 is:

dY

dt
= α0 + α1

K1

R(t) +K1

− δY Y (t) (41)

dT

dt
= α0 + α1

K1

R(t) +K1

− δTT (t) (42)
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Figure 14: Vertical extension

The total concentration of IPTG is IPTG0 = IPTGe(t) + IPTGi(t) and
remains constant at all time. Therfore the external concentration of IPTG is
IPTG0 − IPTGi(t) = IPTGe(t) Assuming a Michaelis Menten kinetics for
the uptake of IPTG then the differential equation is:

dIint
dt

=
kIY (t)(I0 − Iint(t))
KM(t) + I0 − Iint(t)

− δIint(t) (43)

dR

dt
= β0 + β1

K2

K2 + Iint(t)
− δRR(t) (44)

In steady state the concentration of R is:

Rss =
βTot
δR

K2

K2 + Iint(t)
(45)

The expression of superfolder GFP on the plasmid with the regulation of the
T7 promoter is

dSi
dt

= γ0 + γ1
T (t)

K3 + T (t)
− δSS(t)− kSSi(t) (46)

Sssi =
γTot

δS + kS

T (t)

K3 + T (t)
(47)
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Figure 15: Antibiotic-Response Promoter fabHB regulates the expression of
gfp reporter gene. In the presence of an antibiotic with an specific mechanism
of action(i.e. DNA synthesis, RNA synthesis, Protein synthesis, etc.) the
expression of gfp will turned on
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Figure 16: T7- LacO system induction by IPTG

The rate of secretion of the SfGFP is

dSe
dt

= kSSi(t)− δSSe(t) (48)

in steady state the amount of SfGFP is:

Se =
kSS

ss
i

δS
=
kS
δS

γTot
δS + kS

T (t)

K3 + T (t)
= Kobs

T (t)

K3 + T (t)
(49)

In steady state

T ss =
αTot
δT

K1

R(t) +K1

(50)

Making a substitution in R in terms of I it can be shown that T is linearly
proportional the concentration of SfGFP secreted. Experimentally we can
make a curve fitting knowing that the presence of IPTG indirectly induces
the expression of T7 RNA polymerase using the following expression :

1.6 Fitting Parameters

Experimentally we validated our induction system using equation
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Ssse = k′ + k′′
I

K + I
(51)

First we make a kinetic study of the induction of IPTG (0, 40, 200 and
400 uM) upon our constructs of SfGfp and SfGfp-Sialidase measuring the
fluorescence in a microplate reader at wavelengths of 485 nm for excitation
and 528 nm for emission. This measurements were made by triplicate under
0 hrs , 1 hr, 1 hr . 30 min, 2hrs, 2 hrs 30 min and 3 hrs. The averages were
calculated and plotted against time

Figure 17: Fluorescence of SfGFP

Then the effect of the induction was plotted against GFP fluorescence at
different hours.

We make a nonlinear model fit using Mathematica software fromWolfram
Alpha adjusting the experimental data to the equation 51.

The following expression was obtained at 2.5 hours for the fluorescence
of SfGFP-Sialidase

Fsfgf−psial = 4.5008 + 2.96375
I

11.3259 + I
(52)

For the expression of SfGfp at 2.5 hours we have

Fsfgfp = 32.1928 + 25.2714
I

18.5078 + I
(53)
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Figure 18: Fluorescence of SfGFP-Sialidase

Even though the Lac repressor strongly represses both THE T7 promoter
and the Lac Operon we can see how a basal expression mathematically rep-
resented on k∆is present. However while in the SfGfp-sialidase fusion protein
this term keeps almost constant having an estimate value around 4, for the
sfGfp alone the first constant increases over time. We hypothesize that this
is because of a significant decrease of the secretory activity of the SfGfp is
fusioned with other proteins. Further experimentation is needed in order to
confirm this hypothesis.
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1.7 Microfluidics Model

Introduction Compared to single phase flows, microfluidic two-phase flows
relies on several physical phenomena that need to be controlled for the
droplets to fully form. The flow properties in microchannels rely on three
parameters: the channel geometry, the properties of both fluids, and the flow
conditions. These factors can be described by some important dimensionless
parameters.

Dimensionless numbers The physics behind microfluidics include the
relations between the interfacial tension, inertial forces and the involved flu-
idsâ properties. Dimensionless numbers have become a standard manner to
compare fluid interaction at macro and micro scale.

The flow in microfluidic systems are usually characterized by low Reynolds
number values, which describes the ratio between inertial and viscous forces
in fluids, and can be used to characterize the system.

Re =
ρV L

µ
(54)

Where ρ is the density of the fluid (kg/m3), V is the average fluid velocity
(m/s), L is the linear dimension (m) and µ is the dynamic viscosity of the fluid
(kg/ms). In microfluidic systems, viscous forces (µ) dominate and Reynolds
numbers are generally smaller than 100, leading to the prevalence of laminar
flow. For Re « 1 the flow is dominated by viscous stresses and pressure
gradients, hence inertial effects are negligible, and the trajectories of fluidic
particles can be controlled precisely.

The dominant forces at the microscale are interfacial and viscous forces,
therefore it is important to determine the relative importance of the inter-
facial tension compared to other forces in droplet generation. The capillary
number Ca is the ratio of viscous stress to capillary pressure:

1.2
Ca =

ηµ

Y
(55)

Here η is the viscosity of the fluid in the two-phase system, µ is the velocity
of the phase, and Y is the interfacial tension of the liquid-liquid interface.
At low Ca (<1) the interfacial tension dominates, and spherical droplets are
found. In contrast, at high Ca (»1) the viscous forces play an important
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role, leading to deformation of the droplets and sometimes to asymmetric
shapes. Suryo Basaran had previously reported a phases map in which
different droplet generation regimes were identified at different ranges of Ca
numbers for both continuous and disperse phases. The squeezing regime
generates well-rounded monodisperse droplets at high throughput and has
defined boundary conditions for the Ca numbers as shown in the figura.
Hence a prediction can be made based on the parameters considered in the
Ca in order to generate monodisperse droplets in the squeezing regime.

Figure 19: Phase diagram in (Cac,Cad) plane for various modes observed in
microcapillary devices.

Interfacial effects The interfacial effects become relevant when working
at microscale and are crucial in multi-phase flows. The interfaces consid-
ered in microfluidic two-phase systems include the fluid-wall and fluid-fluid
interfaces. The wetting properties of the fluid-wall interface are important
to determine whether there will be an ordered droplet production or not. If
there is a complete wetting of the continuous phase in the microchannels, an
orderly pattern can be achieved. The hydrophobicity or hydrophilicity of a
solid surface can be expressed quantitatively by contact angles. The contact
angle between a liquid and a solid is the angle formed by the tangent from
the contact point along the gas-liquid interface. If the contact angle between
a liquid and a solid is <90◦ the liquid will wet the surface and spread over
it. If the contact angle is ≥90◦, the liquid will stay on the surface as a bead.
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Therefore, the* contact angle between a liquid and a solid is dependent on
the nature of the liquid as well as the surface characteristics of the solid.
Water-in-oil (W/O) droplets can be achieved in hydrophobic surfaces that
have a contact angle higher than 90◦, in which the droplet will not spread
over the surface; nevertheless, it is possible to modify the contact angle by
adding surfactants at different concentrations.

Surfactant effects
Surfactants are often used in order to modify the contact angle between

the fluid-wall interface. They are also used to reduce the interfacial tension
between fluids and to prevent the coalescence or merging of droplets [13]. In
the presence of surfactants, the interfacial tension is determined by the com-
petition between interfacial deformation and surfactant convection, diffusion
and adsorptionâdesorption kinetics during droplet generation [3]. A faster
interfacial deformation and slower mass transfer process causes the surface
coverage of surfactants to become smaller, thereby the interfacial tension
turns larger [13].

Properties of the fluids (i.e., viscosity, density, interfacial tension) and
design parameters (i.e., geometry, dimensions, flow rates) are the main vari-
ables responsible for the formation of continuous monodisperse droplets in a
microfluidic system.

The droplet breakup process in microfluidic devices has been extensively
studied, and several mechanisms have been classified based on the droplet
generation. The most important mechanism is the squeezing regime, since
this produces continuous monodisperse droplets in defined intervals of time.

The droplet breaking process is not fully understood since it is dependent
on many parameters, nevertheless a good approximation can be made based
on design parameters including flow rate, viscosities, and geometry of the
device.

As the viscous forces and capillary forces are the dominant forces in the
droplet breakup and capillary numbers relate those terms, they are essential
in the determination of design parameters for droplet formation. Based on
the known physical parameters of the fluids being used, it can be possible to
calculate the best velocities at which the fluids begin the droplet formation
in the squeezing regime.

A MATLAB script was developed in order to determine the optimized
velocities and hence the flow rates for droplet generation based on the bound-
ary conditions of the squeezing regime. The following figure is an example
of the scatter map created based on the conditions available in literature,
the physical parameters of the fluids (interfacial tension, density, and kine-
matic viscosity), and the geometry of the channel (width and length). The
flow rate conditions were used as parameters into a COMSOL simulation in
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order to determine the optimized flow rates that could generate continuous
monodisperse droplets in order to try them in the experimental section of
the microfluidic device.

Simulations and model
As previously discussed, the role of viscosity, effect of flow rates, and ge-

ometries of the microfluidic device are of great relevance on droplet formation
[1]. Nevertheless, the experimental and empirical investigations that focus
on these effects are usually subject to spend a large amount of resources,
time, and effort in order to achieve an optimized set of conditions for droplet
generation, since there is a high chance of failure at initial stages of the de-
sign process [2], [3]. Therefore, a numerical study of microdroplet generation
could provide a suitable model for the prediction of the effects of the previ-
ously mentioned parameters on a droplet generation T-junction microfluidic
device.

A reliable simulation may be a suitable method to reduce the required
time to achieve an optimized characteristic of the system, and to be able
to forecast how the different modifications of the parameters will impact on
the droplet generation [3]. In order to determine the effect of different flow
rates of both phases and their relation to droplet size and monodispersity,
simulations were carried out using COMSOL Multiphysics which includes a
computational fluid dynamics (CFD) module and a microfluidics module as
well [4]. CFD provides a reliable alternative in order to obtain insights into
a complicated process. Several methods have been typically used in order to
simulate two-phase fluidic systems, including volume of fluid (VOF) method,
level-set method (LS), phase-field method, and lattice-Boltzmann method.
Although there are several advantages regarding the different methods, the
LS method represents the interface by a smooth function, and it is conve-
nient for calculating the curvature and surface tension forces [5]. Hence, it
seems to be suitable for modeling droplet breakup process in microfluidic
devices. In the proposed simulations, we employed LS method to study the
droplet-breakup process using FC40 as the continuous phase, and water as
the dispersed phase. The effects of the capillary number (Ca) and the dif-
ferent flow rates are investigated [3]. COMSOL Multiphysics determines the
modules that are needed in order to give solving parameters, the dimensions
in which the experiment will be performed, and the definition of the physics
of the problem. For this simulation, we used a laminar two-phase flow us-
ing the level set method. A single-phase flow system is less complicated to
model computationally than the multiphase flow due to fewer partial differ-
ential equations that need to be solved parallelly. Nevertheless, it is needed a
two-phase system in order to properly simulate the relationship between the
dispersed and continuous phases. In order to analyze the motion of a liquid,
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the starting equation to use is the Navier-Stokes equation. The following as-
sumptions are made in order to simplify the model: a constant fluid density,
a laminar flow regime exists throughout the system, all fluids are Newtonian,
and three-dimensional stresses for a fluid obey Hookeâs law [6]. While as-
suming the above, the incompressible form of the Navier-Stokes equation is
as follows:

ρ
du

dt
+ ρ(u · ∇u)u = ∇ · [−pI + µ(∇u+∇uT )] + Fg + Fst (56)

As previously described, microfluidic flows have a low Reynolds number, in
which viscous forces dominate over inertial forces. So, the inertial variables
ρ(u · ∇) be removed from the above equation. At low Reynolds numbers
and small length scale, the relationship between the gravitational forces to
surface tension are small enough that the gravitational force is negligible.
The terms related to inertia and body forces are removed from the original
Navier-Stokes equation, giving:

ρ
du

dt
= ∇ · [−pI + µ(∇u+∇uT )] + Fst (57)

Multiphase flow has the previously mentioned properties, the boundary con-
ditions at the fluid interface, contact angle, surface tension force, interfacial
flows, and time dependent. When computational modeling two-phase flow,
another set of equations are necessary. The level set method is used for mul-
tiphase simulations and is described further on in the next section. The level
set method is a simple and straightforward method for modeling multiphase
flow. The level set method uses a smooth signed distance function to produce
an interface. The level set variable is represented by φ. In phase 1, the value
of φ in the dispersed phase is equivalent to one. At the interface, which is the
region that separates both phases, the level set variable is 0.5, while phase 2
is composed of the continuous fluid and φ equals 0. The level-set equation is
expressed as:

∂φ

∂t
+ u→ · ∇φ = γ∇ · (ε∇φ− φ(1− φ)

∇φ
|∇φ|

(58)

In this equation, γ and ε are the stabilization parameters: ε determines
the thickness of the interface where φ goes smoothly from 0 to 1, and it
should have the same order as the computational mesh size of the elements
where interface propagates. The parameter γ determines the amount of
reinitialization of the level set function. A suitable value for γ is the maximum
value of the velocity field of the velocity. The interfacial variables, the unit
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normal to the interface and the curvature κ , then can be calculated by the
following equations respectively:

∧
n =

∇φ
|∇φ|

(59)

κ = −∇ · ∧n|φ=0.5 (60)

The surface tension force acting on the interface between the two fluids is:
→
F sf = σκδ

∧
n (61)

where σ is the interfacial tension coefficient (N/m), κ is the curvature cal-
culated previously. δ is a Dirac delta function concentrated to the interface.
The δ function is approximated by a smooth function according to:

δ = 6|∇φ||φ(1− φ)| (62)

The density ρ and viscosity µ in the Navier-Stokes equation are smoothed
by φ across the interface by the following:

ρ = ρ1 + (ρ2 − ρ1)φ (63)

µ = µ1 + (µ2 − µ1)φ (64)

The finite element analysis (FEA) is a numerical method to solve partial
differential equations. The finite element method relies on meshing the spa-
tial domain into multiple elements. A finer mesh has a higher number of
elements and can provide a more accurate solution but will require a longer
computing time than a coarse mesh [3]. FEA uses an iterative process in
order to calculate a solution to all couple field variables. This modeling in
order to be used needs a geometry, then models, material properties, and
boundary conditions are applied to the geometry, and finally meshed. Then,
computation begins, and the algorithms try to converge in order to give a
solution. The first design is a three-dimensional T-junction composed of two
inlets. The inlet for Fluid 1 had a width of 100 µm and a length of 400 µm
prior to the junction. The inlet for Fluid 2 had an inlet width of 100 µm
and length of 300 µm prior to reaching the junction, as can be seen in the
following figure. Post T-junction, the droplets travel 600 µm to the expanded
pillar induced merging chamber. The entire geometry has a depth of 100µm.

A free tetrahedral mesh with a COMSOL Multiphysics R© predetermined
element size of âfineâ was utilized. Then a mapped operation was performed
over the different distribution elements of the geometry in order to have

28



smaller features in the interface section. Finally, a swept function was used
to generate the different regions of the mesh size in the model.

The properties of fluids utilized in the three-dimensional study can be
seen below in Table I. The flow rate of the continuous phase is not constant
but varies from 1 µl

min
to 50 µl

min
. The variables for the oil are based on the

specification for FC40.
The main goal of the simulation is to generate droplets. Droplet gener-

ation commonly occurs by shearing one fluid phase with another. Utilizing
the T-junction defined previously with the parameters based on the MAT-
LAB script. All physical parameters are based on literature. Since the goal
was to see whether the conditions could generate droplets or not, the results
are only qualitative with a binary response on whether or not a droplet was
formed. The next steps for this simulations were to test the given parameters
that could make droplets in the experimental setup.

29



Figure 20: Regimes
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Figure 21: Properties of fluids used in three-dimensional study.
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