

2016 UoA New Zealand

Past iGEM teams that worked on plastic problems

http://2016.igem.org/Team:UoA NewZealand

2011 Freiburg · Created a cellular, self-replicating purification device for His-tagged proteins http://2011.igem.org/Team:Freiburg • Used Plastic Binding Domain, which binds the polystyrene surface. It helps protein prification 2012 BAU-Indonesia · Isolation of cutinase gene from nature with primers http://2012.igem.org/Team:BAU-Indonesia 2012 TU Darmstadt http://2012.igem.org/Team:TU Darmstadt · Surface display of cutinase on E. coli · Attempted TPA transport into E. coli, further research required • Expressed all TPH enzymes, did not attemt to measure activity · Comfirmed anaerobic conversion of PCA via AroY and XylE enzymes http://2012.igem.org/Team:UC Davis 2012 UC Davis · Confirmed cutinase activity using PNPB esterase assay • Engineered E.coli ethylene glycol metabolism with directed evolution http://2013.igem.org/Team:Imperial_College 2013 Imperial College Producted P3HB bioplastic from mixed waste containing at least some PET http://2014.igem.org/Team:METU_Turkey 2014 METU Turkey • Reduced catechol (downstream product) to pyruvate 2014 ITB Indonesia · LC cutinase activity confirmed with SEM, PNPB http://2014.igem.org/Team:ITB Indonesia http://2015.igem.org/Team:Pasteur Paris 2015 Pasteur Paris • PNPB assay to confirm activity of esterase EST13 • Fluorescent detection of TPA cannot be accomplished when in LB broth · Attempt at detecting PET degradation by mass change failed http://2016.igem.org/Team:ASIJ Tokyo 2016 ASIJ Tokyo 2016 AUC Turkey http://2016.igem.org/Team:AUC_TURKEY Withdrawn http://2016.igem.org/Team:Baltimore BioCr 2016 Baltimore BioCrew · Planned to weigh PET degradation, no results 2016 BGU Israel · PNPB and EM to confirm LC cutinase activity http://2016.igem.org/Team:BGU ISRAEL • P.putida can grow on PCA as sole carbon source, but not TPA • E. coli expressing LC-cutinase with pelB leader sequence grew on M9 plates with PET as sole carbon source. Expected to be due to consumption of ethylene glycol from PET degradation • Unable to determine enzyme efficiency based on growth due to heterogeneity in PET distribution Measured fluorescence of TPA on plates, unable to quantify LC cutinase activity · Petase function confirmed with PNPB http://2016.igem.org/Team:Harvard BioDesign 2016 Harvard BioDesign • D.tsuruhatensis produced electric current when supplied with unspecified quantity of TPA in M9 media 2016 Tianjin • EM confirmation of PETase activity of PET film degradation http://2016.igem.org/Team:Tianjin • Multispectral scanning quantified PETase products for cell free system 2016 TJUSLS China • HPLC detection of MHET to confirm PETase activity in varying conditions http://2016.igem.org/Team:TJUSLS China · Surface display of PETase in E. coli 2016 UESTC-China · SEM and PNPB to confirm PETase activity http://2016.igem.org/Team:UESTC-China

• Possible detection of TPA by UV vis (higher absorbance across spctrum)

· Assembled PETase part with His tag

2017 Baltimore Bio-Crew	Fluorescine diacetate hydrolysis assay to confirm PETase by culturing cells on PETase and MHETasa hydrolytic activity.	http://2017.igem.org/Team:Baltimore_Bio-Crew
2017 BOKU-Vienna	 and MHETase hydrolytic activity Discussion of a possible method for directed evolution of PETase by culturing cells 	http://2017.igem.org/Team:BOKU-Vienna
2017 ITB Indonesia	on PET film that fluoresces when degrated • Successful biofilm formation on PET, but biofilm matrix hampered PETase activity	http://2017.igem.org/Team:ITB_Indonesia
2018 Makerere University	 Engineered E. coli ethylene glycol metabolism with directed evolution Engineered bacteria that expressed PETase and MHETase to degrade PET. The bacteria 	http://2018.igem.org/Team:Makerere_University_
2018 OLS Canmore Canada	 were going to use in the city to degrade plastic wastes Created a novel fusion protein that can specifically bio-tag PET plastic to sort and recycle plastic Fused PETase to mCherry and used a hydrophobin in conjunction with the PETase 	http://2018.igem.org/Team:OLS Canmore Canada
2018 ULaVerne	mCherry fusion protein, which would help bind PETase to PET plastic • Produced PETase-expressing E.coli and introduced it into wastewater plant and home	http://2018.igem.org/Team:ULaVerne Collab
	washing machines to prevent microplastic runoff • Aimed to increase the activity of PETase but failed	
2018 UMaryland	 Produced Measurement method of plastic degradation by using E.coli whose fluorescence intensity changes according to the concentration of PCA, a by-product of TPA (terephthalic acid) metabolism 	http://2018.igem.org/Team:Umaryland
2018 Yale	 Produced E.coli that decomposes plastics by PETase and MHETase Produced E. coli that metabolizes ethylene glycol (EG) through glycolysis 	http://2018.igem.org/Team:Yale
2019 Aachen	 Made Acinetobacter, which metabolizes terephthalic acid (TPA) in the citric acid cycle Constructed a system that used magnetosome to detect nanoplastics in solution and specifically distinguish each polymer 	https://2019.igem.org/Team:Aachen_
2019 BUCT-China	· Aimed to search for enzyme and related genes to clarify PE/PS metabolic pathway	https://2019.igem.org/Team:BUCT-China
2019 Exeter	 Tried to create filtration system that is capable of capturing and degrading microfibres that detach from synthetic clothing Screened the enzyme collection to identify the most efficient mutant PETase and 	https://2019.igem.org/Team:Exeter
	MHETase enzymes • Engineered a more stable PETase that will be able to survive for a longer time in the filter	
2019 HK GTC	• Enhanced PETase degradation activity by creating mutants	https://2019.igem.org/Team:HK_GTC
2019 Humboldt_Berlin	PETase and MHETase were introduced into Chlamydomonas reinhardtii to degrade PET	https://2019.igem.org/Team:Humboldt_Berlin
Zo13 Hambolat_Bollin	into carbon dioxide and water. Generated carbon dioxide were used by Chlamydomonas to photosynthesize	mtps.//2013.igom.org/ roum.rumsorut_bomi
2019 IIT_Chicago	 Aimed to reduce microplastics in the ocean by expressing I.s.PETase in cyanobacteria. They acomplished this in a dual-host plasmid shuttle vector in E.coli and then transferred 	https://2019.igem.org/Team:IIT Chicago

to cyanobacteria by conjugation