

IGEM GIFU 2019 PROTOCOL

ABSTRACT

We, iGEM GIFU_TOKAI, focus on mRNA and changing its topological form into circular to create a new method for mass-production of protein in cell-free system this year. In the current research of circular RNA (circRNA) for protein production, expressing tandem-repeated protein was generated by circRNA without a stop codon. It shows circRNA has a potential ability that it can skip the ratelimiting process, binding ribosomes to mRNA of the central dogma of molecular biology. However, with conventional circRNA, functional protein cannot be translated because protein aggregation quickly occurs. Therefore, we decided to use translation-coupling system, which is found in operons of bacteria to produce monomer protein from circRNA. With applying it to circRNA, ribosomes repeat translation-coupling phenomenon in circRNA and are expected to express monomer protein. Our final goal is to produce functional proteins such as antibodies more efficiently and cheaper in cell-free system to provide medicaments consistently.

iVEPOP

I. PCR - DNA amplification -

Material

Template DNA

GIFU_TOKAI_1

Taatacgactcactatagggaaggagatataccaatgcgt ${\tt aaaggcgaagagctgttcactggtgtcgtccctattctgg}$ tggaactggatggtgatgtcaacggtcataagttttccgt gcgtggcgagggtgaaggtgacgcaactaatggtaaactg acgctgaagttcatctgtactactggtaaactgccggtac cttggccgactctggtaacgacgctgacttatggtgttca gtgctttgctcgttatccggaccatatgaagcagcatgac $\verb|ttcttcaagtccgccatgccggaaggctatgtgcaggaac|$ gcacgatttcctttaaggatgacggcacgtacaaaacgcg tgcggaagtgaaatttgaaggcgataccctggtaaaccgc attgagctgaaaggcattgactttaaagaagacggcaata tcctgggccataagctggaatacaattttaacagccacaa tgtttacatcaccgccgataaacaaaaaatggcattaaa gcgaattttaaaattcgccacaacgtggaggatggcagcg tgcagctggctgatcactaccagcaaaacactccaatcgg tgatggtcctgttctgctgccagacaatcactatctgagc acgcaaagcgttctgtctaaagatccgaacgagaaacgcg atcatatggttctgctggagttcgtaaccgcagcgggcat cacgcatggtatggatgaactgtacaaata

Primers

Cont_Fw

aaggagatataccaatgcgtaaaggcgaag

Cont Rv

ggattagttattcattattatttgtacagttcat

T7 SD Pro Fw

gaaattaatacgactcactatagggagaccacaacggttt ccctctagaaataattttgtttactttaagaaggagatat acca

Cont_No1_New Fw

aggagatataccaatgcgtaaaggcgaggag

Cont_No3_Fw

gaaattaatacgactcactatagggaaacc

T7_Abe_Fw

Cgcggatcctaatacgactcactatag

Rev_2-o-methyl_primer

atttgtacagttcatccat

Polymerase

KAPA HiFi (KAPA BIOSYTEMS)

Protocol

Control DNA

All Primers and template DNA should be tapped and centrifuged briefly before using to prevent loss and/or decrement of PCR product that amplified using the reagents.

PCR m ixture

Tem plate DNA	1uL
Polymerase (KAPAHiFi)	12.5uL
Prim er (Cont_Fw)	1.5uL
Prim er (Cont_Rv)	1.5uL
W ater	8.5uL
Total vol.	25uL

Run the PCR

95℃	3 m in
$98^{\circ}\!$	20 sec
60℃	15 sec
72 ℃	1 m in 30 sec
72 ℃	3 m in
4 ℃	∞

30 cycles

Table.1 control PCR mixture and PCR cycling protocol I

The amplified control DNA fragments must be amplified again to remove the recognition site for *Sap I*, type IIS restriction enzyme by Cont No1 New Fw

(change the Fw primer) after amplified template using Cont_Fw primer and Cont_Rv primer.

PCR m ixture

Tem plate DNA	1uL
Polymerase (KAPAHiFi)	12.5uL
Prim erFw (Cont_No1_New Fw)	1.5uL
Prim erRv(Cont_Rv)	1.5uL
W ater	8.5uL
Totalvol.	25uL

Run the PCR

95℃	3 m in	
98℃	20 sec	
60°C	15 sec	
72 ℃	1 m in 30 sec	
72 ℃	3 m in	
4℃	∞	
30 cycles		

Moreover, the PCR product has to amplify by T7PRO_SD(change the Fw primer) after amplified template using Cont_Fw primer and Cont_Rv primer. When running the PCR, we have to change the annealing temperature from 58°C to 60°C (touchdown PCR) because T7_SD_PRO primer has longer adapter region than overlapping region, it is difficult to hybridize to template DNA with usual annealing temperature.

PCR m ixture

Tem plate DNA	2 uL
Polymerase (KAPAHiFi)	25 uL
Prim erFw (T7PRO_SD)	3 uL
Prim erRv(Cont_Rv)	3 uL
W ater	17 uL
Totalvol.	50 uL

Run the PCR

95°C	3 m in
98℃	20 sec
58→60°C	15 sec
72 ℃	1 m in 30 sec
72 ℃	3 m in
4 °C	∞

30 cycles

Finally, the product must be amplified with Cont_No3_Fw primer to eliminate *BsaI*, recognition site as type IIS restriction enzyme.

PCR m ixture

Tem plate DNA	2 uL
Polymerase (KAPAHFi)	25 uL
PrimerFw (Cont_No3_Fw)	3 uL
PrimerRv(Rev_2-o-methy	/LPrimer) 3 uL
Water	17uL

Total vol. 50uL

Run the PCR	
95℃	3 m in
98℃	20 sec
60℃	15 sec
72℃	1 m in 30 sec
72 ℃	3 m in
4℃	∞

30 cycles

Table.2 control PCR mixture and PCR cycling

	-
protocol II	
Medium SD	
PCR m ixture	
Tem plate DNA	2 uL
Polymerase (KAPAHiFi)	25 uL
Prim erFw (T7_Abe_Fw)	3 uL
$Prim erRv(Rev_2-o-m ethy_Prim er)$	3 uL
W ater	17uL
Totalvol.	50uL

Run the PCR	
95℃	3 m in
98℃	20 sec
58℃	15 sec
72 ℃	1 m in 30 sec
72 ℃	3 m in
4℃	∞
30 cycles	

Table.3 medium-SD PCR mixture and PCR cycling protocol

II. Transcription for DNA

We transcript using MEGAscript® by Thermo Fisher Bioscience®. Follow protocol for MEGAscript® when we transcript control DNA fragment (it will be used still linear fragment after transcription). However, guanosine monophosphate is added to MEGAscript® mix when Full-SD DNA fragment and Weak-SD DNA fragment are transcribed because it needs the procedure to circularize using T4 RNA ligase 2. The reason will be described next part.

Material	
Enzyme Mix	
10X Reaction Buffer	
ATP Solution	
CTP Solution	
GTP Solution	
UTP Solution	
Guanosine monophosphate (C	GMP)
Nuclease-free Water	
Template DNA	

Am ount	Com ponent
to 20 uL	Nuclease-free Water
2 uL	ATP
2 uL	CTP
2 uL	GTP
2 uL	UTP
2 uL	10 × Reaction Buffer
(1 uL)	(optional) [$lpha$ -32P] UTP as a trancer
0.1-1 ug	linear tem late DNA
2 uL	Enzym e M ix

Table.6 protocol for transcription with control DNA

Use 0.1–0.2μg PCR-product template or ~1μg linearized plasmid template.

Important

All reagents should be microfuged briefly before opening to prevent loss and/or contamination of material that may be present around the rim of the tube.

Control DNA

Follow original protocol for MEGAscript®.

Am ount	Com ponent
to 20 uL	Nuclease-free Water
2 uL	ATP
2 uL	СТР
2 uL	GTP
2 uL	UTP
2 uL	10 × Reaction Buffer
(1 uL)	(optional) [α – 32 P] UTP as a trancer
0.1-1 ug	linear tem late DNA
2 uL	Enzym e M ix

Table.8 Transcription mixture for control DNA

- 1. Thaw the frozen reagents Place the RNA Polymerase Enzyme Mix on ice.
- 2. Vortex the 10X Reaction Buffer and the 4 ribonucleotide solutions (ATP, CTP, GTP, and UTP) until they are completely in solution.

- 3. If they thawed, store the ribonucleotides on ice, but keep the 10X Reaction Buffer at room temperature while assembling the reaction.
- 4. The spermidine in the 10XReaction Buffer can coprecipitate the template DNA if the reaction is assembled on ice.
- 5. Add the 10XReaction Buffer after the water and the ribonucleotides are already in the tube. The following amounts are for a single $20\mu L$ reaction. Reactions may be scaled up or down if desired.
- 6. Gently flick the tube or pipette the mixture up and down gently, and then microfuge tube briefly to collect the reaction mixture at the bottom of the tube.
- 7. Incubate at 37° C, 2–4hr The first time a new template is transcribed, the recommended incubation time is 2–4hours.

Transcription for circular RNA (medium-SD)

Add guanosine monophosphate to mixture when transcripts medium-SD DNA, weak-SD DNA, and strong-SD DNA, and follow the present protocol otherwise.

Am ount	Com ponent	
to 20 uL	Nuclease-fre	ee W ater
2 uL	ATP	
2 uL	CTP	
2 uL	GTP	
2 uL	UTP	
2 uL	10 × Reactio	n Buffer
(1 uL)	(optional) [α	- ³² P]UTP as a trancer
0.1-1 ug	linear tem lat	e DNA
2 uL	Enzym e M ix	
75 m M	GM P	

Table.8 Transcription mixture for medium-SD

- 1. Thaw the frozen reagents Place the RNA Polymerase Enzyme Mix on ice.
- 2. Vortex the 10X Reaction Buffer and the 4

- ribonucleotide solutions (ATP, CTP, GTP, and UTP) until they are completely in solution.
- 3. If they thawed, store the ribonucleotides on ice, but keep the 10XReaction Buffer at room temperature while assembling the reaction.
- 4. The spermidine in the 10XReaction Buffer can coprecipitate the template DNA if the reaction is assembled on ice.
- 5. Add the 10X Reaction Buffer after the water and the ribonucleotides are already in the tube. The following amounts are for a single $20\mu L$ reaction. Reactions may be scaled up or down if desired.
- 6. Gently flick the tube or pipette the mixture up and down gently, and then microfuge tube briefly to collect the reaction mixture at the bottom of the tube.
- 7. 2–4hr the first time a new template is transcribed, the recommended incubation time is 2–4 hours.

III. Eliminate the template DNA

Material

TURBO DNase

Protocol

- 1. Add 1μL TURBO DNase, and mix well (the reaction may be viscous).
- 2. Incubate at 37° C for 15min.

IV. Purification RNA

Reagents

Binding Solution

Wash Solution Concentrate (Add 20ml 100% ethanol

before use)

Ammonium Acetate

Gear

Elution Solution

Filter Cartridges

Elution Tubes

RNA should be purified by MEGAclear®. Follow the

protocol.

Protocol

* Prepare the Wash Solution

Add 20 mL of ACS grade 100% ethanol to the bottle labeled Wash Solution Concentrate. Mix well. Place a check in the box on the label to indicate that the ethanol was added. With the ethanol, this solution will be referred to as Wash Solution.

- 1. Bring the RNA sample to $100~\mu L$ with Elution Solution. Mix gently but thoroughly.
- 2. Add 350 μL of Binding Solution Concentrate to the sample. Mix gently by pipetting.
- 3. Add 250 μ L of 100% ethanol to the sample. Mix gently by pipetting.
- 4. Apply the sample to the filter:

Centrifuge users:

- a. Insert a Filter Cartridge into 1 of the Collection and Elution Tubes supplied.
- b. Pipet the RNA mixture onto the Filter Cartridge.
- c. Centrifuge for ~15 sec to 1 min, or until the mixture has passed through the filter. Centrifuge at RCF $10,000-15,000\times g \ (typically\ 10,000-14,000\ rpm).$ Spinning harder than this may damage the filters.
- d. Discard the flow-through and reuse the Collection and Elution Tube for the washing steps.
- 5. Wash with 2 \times 500 μ L Wash Solution.
- a. Apply 500 μL Wash Solution. Draw the Wash Solution through the filter as in the previous step.
- b. Repeat with a second 500 μL aliquot of Wash Solution.
- c. After discarding the Wash Solution, continue centrifugation or leave the Filter Cartridge on the vacuum manifold for 10–30 sec to remove the last

traces of Wash Solution.

- 6. Elute RNA from the filter with 50 μ L Elution Solution using one of the methods described below; they are equivalent in terms of RNA recovery.
- RNA elution option 1
- a. Place the Filter Cartridge into a new Collection/Elution Tube.
- b. Apply 50 μ L of Elution Solution to the center of the Filter Cartridge. Close the cap of the tube and incubate in a heat block set to 65–70° C for 5–10 min.
- c. Recover eluted RNA by centrifuging for 1 min at RT (RCF 10,000–15,000 \times g).
- d. To maximize RNA recovery, repeat this elution procedure with a second 50 μ L aliquot of Elution Solution. Collect the eluate into the same tube.
- c. To maximize RNA recovery, repeat this elution procedure with a second preheated 50 μ L aliquot of Elution Solution. Collect the eluate into the same Collection/Elution Tube.

Note: If glass fibers are observed in your sample, they can be removed by centrifuging the sample briefly and then transferring the RNA to a new tube.

V. Circularization for RNA

Material

RNase inhibitor T4 RNA ligase \times 10 reaction buffer

Guide DNA

Circularize the RNA using T4 RNA ligase 2 with guide DNA, so the fragment is circularized to be efficiently by closing each termination for the RNA. Add RNase inhibitor to avoid digestion for the circular RNA.

Am ount	Com ponent
Up to 40 uL	Nuclease-Free Water
3 uL	tem plate RNA
2 uL (4 un it)	RN ase Inhibitor
1 uL	T4RNA Ligase 2
4 uL	×10 reaction Buffer
2 uL	G u ide D N A

Table.9 Circularization for RNA

- 1. Thaw the reagents and the linear RNA template on ice, and place on -20°C.
- 2. Vortex or tapping the reagents and centrifuge.
- 3. Add Nuclease-Free water, Guide DNA, and template RNA to clean PCR tube, and it heat 90°C, 5 minutes to anneal both strands.
- 4. Mix reagents other than T4 RNA ligase2, $\times 10$ reaction buffer in the tube.
- 5. Incubate 37°C, 3 h after heat 60°C, 5 minutes to anneal guide DNA and template.

VI. Purification for circular RNA

IV. Purification RNA

Material

Reagents

Binding Solution

Wash Solution Concentrate (Add 20ml 100% ethanol before use)

Ammonium Acetate

Gear

Elution Solution

Filter Cartridges

Elution Tubes

RNA should be purified by MEGAclear[®]. Follow the protocol.

Protocol

* Prepare the Wash Solution

Add 20 mL of ACS grade 100% ethanol to the bottle labeled Wash Solution Concentrate. Mix well. Place a

check in the box on the label to indicate that the ethanol was added. With the ethanol, this solution will be referred to as Wash Solution.

- 1. Bring the RNA sample to $100~\mu L$ with Elution Solution. Mix gently but thoroughly.
- 2. Add 350 μ L of Binding Solution Concentrate to the sample. Mix gently by pipetting.
- 3. Add 250 μ L of 100% ethanol to the sample. Mix gently by pipetting.
- 4. Apply the sample to the filter:

Centrifuge users:

- a. Insert a Filter Cartridge into 1 of the Collection and Elution Tubes supplied.
- b. Pipet the RNA mixture onto the Filter Cartridge.
- c. Centrifuge for ~15 sec to 1 min, or until the mixture has passed through the filter. Centrifuge at RCF $10,000-15,000 \times g$ (typically 10,000-14,000 rpm). Spinning harder than this may damage the filters.
- d. Discard the flow-through and reuse the Collection and Elution Tube for the washing steps.
- 5. Wash with $2 \times 500 \,\mu\text{L}$ Wash Solution.
- a. Apply 500 μL Wash Solution. Draw the Wash
 Solution through the filter as in the previous step.
- b. Repeat with a second 500 μL aliquot of Wash Solution.
- c. After discarding the Wash Solution, continue centrifugation or leave the Filter Cartridge on the vacuum manifold for 10–30 sec to remove the last traces of Wash Solution.
- 6. Elute RNA from the filter with 50 μ L Elution Solution using one of the methods described below; they are equivalent in terms of RNA recovery.
- RNA elution option 1

a. Place the Filter Cartridge into a new Collection/Elution Tube.

b. Apply 50 μL of Elution Solution to the center of the Filter Cartridge. Close the cap of the tube and incubate in a heat block set to 65–70° C for 5–10 min.

- c. Recover eluted RNA by centrifuging for 1 min at RT (RCF 10,000–15,000 \times g).
- d. To maximize RNA recovery, repeat this elution procedure with a second 50 μ L aliquot of Elution Solution. Collect the eluate into the same tube.
- c. To maximize RNA recovery, repeat this elution procedure with a second preheated 50 μ L aliquot of Elution Solution. Collect the eluate into the same Collection/Elution Tube.

Note: If glass fibers are observed in your sample, they can be removed by centrifuging the sample briefly and then transferring the RNA to a new tube.

VII. Eliminate linear RNA by RNase R

Material

RNase R

×10 reaction Buffer

RNA mixture (include linear RNA and circular RNA)

Am ount	Com ponent	"
Up to 20 uL	Nuclease-Free	W ater
1-10 ug	RNA m ixture RNase R	
2 uL	RN ase R	
2 uL	×10 RN ase R	reaction buffer

- 1. Mix reagents and RNA mixture at nuclease-free tube.
- 2. Incubate 37°C, 15 min.

VIII. Expression for Protein in vitro

Reagents

myTXTL LS70 Master Mix (Arber Bioscience)

PURE frex

Solution I

Solution II

Solution III

We expressed superfolder GFP via *in vitro* translation system such as myTXTL® and PURE frex®. myTXTL® is crude cell extract cell-free system that leach transcription and translation factor from *E. coli*. On the other hand, PURE frex® was sorted reconstitution cell-free system that these are using purified translation factor such as initiation, elongation, and termination. We attempted to compare both cell-free system.

myTXTL®

We add template RNA followed myTXTL.

Am ount	Com ponent
9 uL	LS70 M aster M ix
3 uL	Tem plate RNA

- 2. Completely thaw the myTXTL LS70 Master Mix on ice. Keep reagents on ice till use.
- Directly before use, vortex the myTXTL LS70
 Master Mix for 2-3 seconds and briefly spin down.
- 4. Add template RNA and Master Mix to nuclease free tube, then template RNA must be added carefully to a final concentration of 20 nM.
- 5. Gently vortex the reaction mixture for 2-3 seconds and briefly centrifuge the assembled myTXTL reaction to collect the entire volume at the bottom of the tube.
- 6. Incubate the myTXTL reaction(s) for up to 16 h at 29°C.

PURE frex®

Followed protocol for PUREfrex

Am ount	Com ponent
7–X uL	Nuclease-Free water
10 uL	Solution I
1 uL	Solution II
2 uL	Solution III
X uL	tem p late (1 kbp:0.5~3ng/uL)

1. Completely thaw the Solution I in room temperature

or 37°C at 1 minute, and store on ice.

- 2. Solution II and Soluition III should thaw on ice.
- 3. Vortex the reagents for few seconds and briefly spin down.
- 4. Mix all reagents and template RNA/DNA in nuclease free tube.
- 5. Incubate 37°C, 2~6h.

IX. Assay

We used bioanalyzer (Agilent Technology) and realtime PCR (Thermo Fischer Scientific) as assay, also SDS-PAGE and western blotting was performed to identify the protein.

