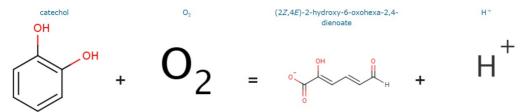
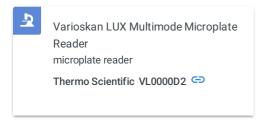


Measurement of XylE (Catechol 2,3-Dioxygenase) enzyme activity by microplate reader


Ji Gao¹

¹Tsinghua University

ABSTRACT


Simple measurement of XylE (Catechol 2,3-Dioxygenase) enzyme activity by microplate reader. Catechol 2,3-Dioxygenase can catalyze catechol (1,2-Dihydroxybenzene) to 2-HMS, which has a high absorbance at 377 nm, so we may use photometric mode of microplate reader to measure the concentration of 2-HMS, product of the enzyme.

GUIDELINES

This is part of a tryout for our iGEM project.

The microplate we used is listed here.

Perform the measurement at § Room temperature or § 25 °C .

MATERIALS

NAME ×	CATALOG #	VENDOR ~
double distilled water (ddH20)		
12-Dihydroxybenzene	17253	Adamas-beta
Corning™ 96-Well Clear Bottom Black or White Polystyrene Microplates	07-200-565	Fisher Scientific

SAFETY WARNINGS

Catechol can be hazardous if not properly operated.

 $Please\ refer\ to\ \underline{https://pubchem.ncbi.nlm.nih.gov/compound/catechol\#section=Safety-and-Hazards}$

BEFORE STARTING

Use [M]100 Milimolar (MM) catechol water solution as stock, and use [M]10 Milimolar (MM) as working solution.

We use LB cell culture (BL21 strain in our project) to perform measurement.

Add cell culture of a good state (logarithm phase) to 96-well plate.

Manual steps

1 Add **100 μl** cell culture per well.

It is recommanded to use replicates and controls to avoid mistakes or deviation.

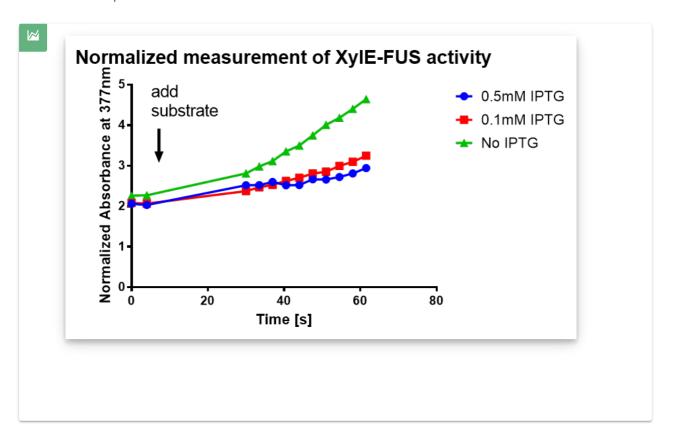
2 Turn on the microplate reader and computer. Run the software to set the protocol and plate layout.

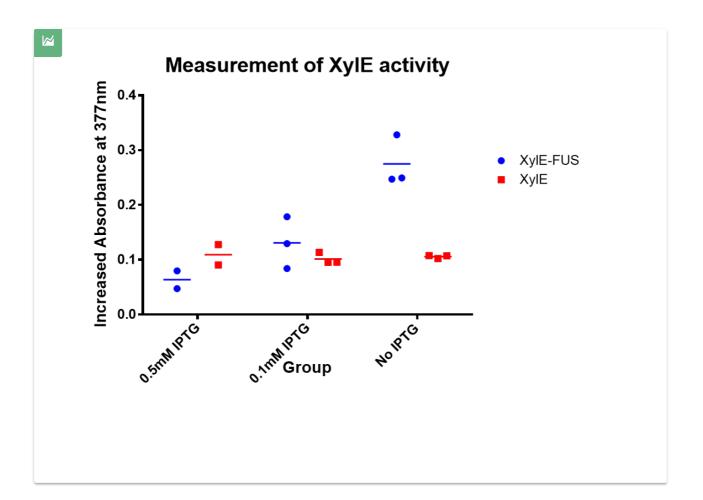
Protocol for the instrument

- 3 Shake the plate for $\bigcirc 00:00:05$ at $\bigcirc 600$ rpm.
- Measure the absorbance of cell culture at 600 nm as the estimation of cell amounts.
- 5 Measure the absorbance of cell culture at 377 nm as the baseline of A377 before the reaction.
- 6 Plate out and add $\boxed{2.5 \,\mu\text{l}}$ catechol ($\boxed{\text{Milimolar (mM)}}$) to every well, then plate in immediately.

The working concentration of substrate is [M]0.25 Milimolar (mM) here. Other working concentration could also work.

- 7 Shake the plate for **© 00:00:05** at **@ 600 rpm** .
- 8 Measure the absorbance of cell culture at 377 nm, continuously (like © 00:00:10 per reading) or after a certain period of time (like © 00:01:30).


9 Export the data from the software.


Properly dispose of the contaminated cell culture and microplates!

10 Normalize the A337 value by optical density at 600 nm.

Make a Time-A377 plot like this:

Or simply substract the absorbance before the reaction from the value after a specifc period of time:

