Gibson Assembly® Protocol (E5510)

1. Set up the following reaction on ice:

	Recommended Amount of Fragments Used for Assembly		
	2-3 Fragment Assembly	4-6 Fragment Assembly	Positive Control**
Total Amount of Fragments	0.02–0.5 pmols* Χ μΙ	0.2–1 pmols* Χ μΙ	10 μΙ
Gibson Assembly Master Mix (2X)	10 μΙ	10 μΙ	10 µl
Deionized H2O	10-X µl	10-X µl	0
Total Volume	20 μl***	20 µl***	20 μΙ

^{*} Optimized cloning efficiency is 50–100 ng of vectors with 2–3 fold of excess inserts. Use 5 times more of inserts if size is less than 200 bps. Total volume of unpurified PCR fragments in Gibson Assembly reaction should not exceed 20%.

2. Incubate samples in a thermocycler at 50° C for 15 minutes when 2 or 3 fragments are being assembled or 60 minutes when 4-6 fragments are being assembled. Following incubation, store samples on ice or at -20° C for subsequent transformation.

Note: Extended incubation up to 60 minutes may help to improve assembly efficiency in some cases (for further details see FAQ section).

3. Transform NEB 5-alpha Competent E. coli cells (provided with the kit) with 2 μ l of the assembly reaction, following the transformation protocol.

^{**} Control reagents are provided for 5 experiments.

^{***} If greater numbers of fragments are assembled, additional Gibson Assembly Master Mix may be required.

Gibson Assembly® Chemical Transformation Protocol (E5510)

- 1. Thaw competent cells on ice.
- 2. Add 2 μ l of the chilled assembly product to the competent cells. Mix gently by pipetting up and down or by flicking the tube 4–5 times. Do not vortex.
- 3. Place the mixture on ice for 30 minutes. Do not mix.
- 4. Heat shock at 42°C for 30 seconds. Do not mix.
- 5. Transfer tubes to ice for 2 minutes.
- $6. Add 950 \mu l$ of room-temperature SOC media to the tube.
- 7. Incubate the tube at 37°C for 60 minutes. Shake vigorously (250 rpm) or rotate.
- 8. Warm selection plates to 37°C.
- 9. Spread 100 μ l of the cells onto the selection plates. Use Amp plates for positive control sample.
- 10. Incubate overnight at 37°C.