
Analytical Modelling Guide

1 Introduction

As a preliminary investigation, in order to justify the concept of spatial pat-
terning of a lawn of cells via the transport of a redox-active molecule from an
electrode surface, a model of the concentration distribution of a given species
around such an electrode must be generated. At this point, transport is defined
as any molecular motility due to diffusive, electrokinetic, or bulk convective ef-
fects.

2 Simplification of the problem

Due to the conditions of the problem, some simplifications can be made to this
initial model. Due to the fact that any transport of redox-active molecules
occurs within an agar matrix, bulk convection can be discounted. In addition,
it can be shown that electrokinetic effects can be discounted.

2.1 Discounting Electrokinetic Effects

In aqueous solution, electrostatic interactions of any type are screened due to
the presence of ions in the solution. This can be imagined as follows: suppose
that one inserts a positively charged plate into an aqueous solution. Anions in
the solution will be attracted to the surface of this plate, and their electric fields
will superpose with the electric field of the charged plate. This has the effect
of cancelling out the electric field of the plate to a greater and greater extent
as the distance from the plate increases. In order to quantitatively determine
the effect of these attracted ions, we must use their concentration distribution,
which is given by the Boltzmann equation.

n(z) = n0exp(
−zeψ(x)

kBT
) (1)

Where n0 is the mean density, or concentration, of ions, ze is the charge of the
ions, and ψ(x) is the potential as a function of distance from the charged plate.

The potential ψ(x) is determined by the charge distribution of the ions in
the following way:

ρ(z) = −εε0(
d2ψ

dx2
) (2)
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In the case where ρ = ze, or where the only ions present are those needed to
balance the charge on the plate, (1) and (2) are combined to give the Poisson-
Boltzmann equation.

d2ψ

dx2
= −(

zen0
εε0

)exp(
−zeψ(x)

kBT
) (3)

Considering the case of a solution of a monovalent salt, such as NaCl, the
Poisson-Boltzmann equation is given as follows.

d2ψ

dx2
= −(

zen0
εε0

)exp(
−zeψ(x)

kBT
) + (

zen0
εε0

)exp(
zeψ(x)

kBT
)

= (
2zen0
εε0

)sinh(
zeψ

kBT
) z = 1

(4)

For the case of a charged plate in solution, the boundary conditions are
lim
x→∞

ψ(x) = 0 and lim
x→∞

dψ(x)/dx = 0. For small ψ, the approximation sinh( zeψkBT
≈

(zeψ/KBT ) (the Debye-Huckel approximation) can be used, giving the solution
to (4) as

ψ(x) = ψ0exp(−kx), k = (
2e2n0z

2

εε0kBT
)

1
2 (5)

Thus it can be seen that ions in an electrolyte screen the electric field in an
exponential manner, the lengthscale of which is given by the Debye length,
k−1. It is convenient for this application to use mol/m3 to calculate the Debye
length, and since the bulk electrolyte is monovalent NaCl, the equation for the
Debye length becomes

λD = (
εε0kBT

2e2NAI
)

1
2 (6)

With NA being the Avogadro number and I the ionic strength of the solution,
which is equivalent to the concentration of ions in mol/m3 for monovalent salts.
A NaCl concentration of 171mol/m3, as is the NaCl concentration in LB broth,
and hence in this problem, gives λD = 0.758nm. Hence, the electric field does
not penetrate any meaningful distance into the solution, and conclude that
the effect of the applied field upon the transport of redox-active molecules is
insignificant.

3 Steady State Concentration Distribution

In order to determine the steady state concentration distribution of a given
species around an electrode, the problem is formulated as follows. This solution
comprises a complete manual resolution of a problem in electrochemical sensing.
(Bell, Seelanan and O’Hare, 2017)
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1. The agar is defined as a 3 dimensional half-space, with its upper limit
being the plane z = 0, and extending arbitrarily far in the radial and the
−z directions.

2. The electrode on the agar plate is defined as a disk of radius a, centred
on the origin, in the plane z = 0.

3. There is a constant flux Q of the species of interest through the surface of
the electrode, and a no-flux condition everywhere else on the plane z = 0.

4. The problem is constructed in the form of a 2D radially symmetric (ax-
isymmetric) diffusion problem, using cylindrical coordinates.

The governing equation for the system is taken as the diffusion equation at
steady state, which is equivalent to the Laplacian of the concentration, given
below in cylindrical coordinates. This also accounts for conservation of the
species.

∇2C(r, z) = 0

∂2C(r, z)

∂r2
+

1

r

∂C(r, z)

∂r
+
∂2C(r, z)

∂z2
= 0

(7)

The boundary conditions for the problem can be written as follows.

D
∂C(r < a, 0)

∂z
= −Q

D
∂C(r > a, 0)

∂z
= 0

lim
|r|,|z|→∞

C(r, z) = 0

(8)

It is then helpful to rewrite the problem in a non-dimensional form, using the
scalings

r = ar̂ z = aẑ C =
Qa

D
Ĉ (9)

which gives the nondimensional equation

∂2C(r, z)

∂r2
+

1

r

∂C(r, z)

∂r
+
∂2C(r, z)

∂z2
= 0 (10)

with boundary conditions

∂C(r < 1, 0)

∂z
= −1

∂C(r > 1, 0)

∂z
= 0

lim
|r|,|z|→∞

C(r, z) = 0

(11)
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In order to solve this, the Hankel transform must be utilised. The Hankel
transform is also known as the Fourier-Bessel transform, and is the 2D Fourier
transform with a radially symmetric integral kernel. It is self-inverting (its
inverse transform is the Hankel transform, given ν > − 1

2 ), and is given by

Hν(α) =

∫ ∞
0

rJν(αr)f(r)dr (12)

3.1 Properties of the Hankel Transform

For the purposes of this problem, it is important to derive one particular prop-
erty of the Hankel transform. We define a differential operator

Aν(f(r)) = −∂
2f(r)

∂r2
− 1

r

∂f(r)

∂r
+
ν2f(r)

r2
(13)

The Hankel transform behaves such that

Hν(Aν(f))(ζ) = |ζ|2Hν(f)(ζ) (14)

This property is widely known and will not be proven here for the sake of
simplicity.

3.2 Derivation of the Steady State Solution

To begin, (10) is rearranged to the form

∂2C(r, z)

∂z2
= −∂

2C(r, z)

∂r2
− 1

r

∂C(r, z)

∂r
(15)

Using (13), it can be seen that this is equivalent to

∂2C(r, z)

∂z2
= A0(C(r, z)) (16)

Then, taking the Hankel transform of both sides gives

∂2C0(α, z)

∂z2
= α2C0(α, z) (17)

C0(α, z) = Aexp(αz) +Bexp(−αz) (18)

Using boundary conditions (11), it is obvious that A = 0. In order to find B,
the derivative of the Hankel transform of C(r, z) is taken, and equated to the
Hankel transform of the derivative of C(r, z). Again, boundary conditions are
used to determine B.

dC0(α, z)

dz
= −Bαexp(−αz) =

∫ ∞
0

rJ0(αr)
∂C(r, z)

∂z
dr (19)
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dC0(α, 0)

dz
= −Bα =

∫ ∞
0

rJ0(αr)
∂C(r, 0)

∂z
dr

= −
∫ 1

0

rJ0(αr)dr + 0

∫ ∞
1

rJ0(αr)dr

=
J1(α)

α

B = −J1(α)

α2

(20)

C0(α, z) = −J1(α)

α2
exp(−αz) (21)

From this, the concentration distribution of the species can be found by taking
the inverse Hankel tranform, resulting in an integral that, although difficult
to evaluate analytically, can be easily computed for any desired point using a
numerical integrator.

C(r, z) =

∫ ∞
0

αJ0(αr)
J1(α)

α2
dα

=

∫ ∞
0

J0(αr)J1(α)
dα

α

(22)
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