
To provide our experiments with solid foundation, we incorporated theoretical analysis into 
the entire construction, verification and application of SPOT. Considering the basic feature 
of SPOT is the spontaneous formation of granules, we first computed the approximate 
phase diagrams concerning the conditions for phase separation from a thermodynamic 
perspective. For a more dynamic process, we also simulated liquid-liquid phase separation 
based on stochastic Cahn-Hilliard equation. The partial differential equations are solved by 
finite-element method under Neumann boundary condition, along with Crank-Nicolson 
scheme for time stepping. We altered an parameter named χ to predict what will happen 
if we change the strength of interaction, presumably the concentration of inducer. 
 
Based on the simulation of phase separation, we explored the potential applications of 
SPOT, for instance, metabolic regulation. In this case, previously simulated separation 
process can represent the concentration of enzymes in a temporal sequence. We coupled 
it with a typical enzyme kinetic reaction to predict how would SPOT affect reaction rate. 
 

SIMULATION FOR PHASE SEPARATION 
_______________________________________________________________________________________________ 
 

Considering that our project is mainly predicated on liquid-liquid phase separation, we 
simulated phase separation of a ternary mixture in silico for deeper understanding and 
approximate predictions of our experiments. To better demonstrate the underlying 
principles, we started with a binary mixture to see why and when two components s will 
separate. 
 
Generally, when intermolecular interactions are neglected (i.e. all molecules can be treated 
independently), two components tend to mix with each other until entropy reaches its 
maximum. The resulting homogeneous mixed state remains stable in this case. For 
instance, water and ethanol can be mixed at any ratio. 
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Figure. 1: (A) Mixed binary mixture, circles with different colors denote different molecules. 
(B) Demixed binary mixture, one component forms a dense liquid droplet 
 
Things might get a little different when interaction among molecules are considered. Under 
the conditions of constant temperature, volume and particle numbers, the system is at 
equilibrium when the Helmholtz free energy 𝐹 is the lowest. Based on regular solution 
model, the free energy density 𝑓 takes the following form in the unit of 𝑘%𝑇	[1]: 

													𝑓 = 𝜙 ln𝜙 + (1 − 𝜙) ln(1 − 𝜙) ++𝜒𝜙(1 − 𝜙) + 2
3
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where 𝜙  is the volume fraction of one component (let us say component A), 𝜒 is a 
parameter characterizing the strength of intermolecular interactions, and 𝜆 is related to 
the surface tension between interfaces. The volume fraction of A is defined as the volume 
of A molecules divided by the total volume of the system. In a binary system, the volume 
fraction of the other component, let us say component B, naturally becomes		1 − 𝜙. 
 
First let’s focus on the symmetric part of 𝑓  , i.e 𝑓8 = 𝜙 ln𝜙 + (1 − 𝜙) ln(1 − 𝜙) +
𝜒𝜙(1 − 𝜙), and see how its shape changes as we vary 𝜒. When A and B are attracted to 
each other, 𝜒 is less than 0; when A and B repulse each other, 𝜒 is greater than 0. As 
can be easily seen in Fig. 2, when 𝜒 < 2, 𝑓8 only has one minimum; when 𝜒 > 2, 𝑓8 has 
two minima and one maximum. A bifurcation takes place when 𝜒 = 2, which essentially 
alters the free energy density. 

 
Figure. 2: Plot of the symmetric part of free energy density at various values of 𝜒 

 
  For better illustration, we scrutinized two typical cases, 𝜒	= 0 and 𝜒	= 4. Fig. 3 shows 

the free energy density for the mixed state in blue solid lines and the separated state in 
green dotted line. As can be seen in Fig. 3, when 𝜒 = 0, for any initial concentration 
represented by 𝜙8, the system always requires extra free energy to demix into any two 
separate states 𝜙< and 𝜙3, where the green dotted line is higher than any point on the 
blue solid line between 𝜙< and 𝜙3; when χ=4, there exists a range of 𝜙8  to separate 
into two demixed compositions 𝜙< and 𝜙3, where the green dotted line is lower than 
any point on the blue solid line between 𝜙< and 𝜙3. This is the situation where phase 
separation can happen spontaneously. 

 
 



 
Figure. 3: The blue solid line and the green dotted line represent the free energy density 
for the mixed state and separated state, respectively. (A) χ = 0. The green dotted line is 
always higher than the blue solid line, indicating an extra energy requirement for separation; 
(B) χ = 4. The green dotted line is below the blue solid line, making spontaneous phase 
separation possible. 
 
To be more precise, we can specify the conditions under which separation can happen. 
According to fundamental work on liquid-liquid phase separation, when 𝑑3𝑓/𝑑𝜙3 < 0, any 
local perturbation will result in spontaneous separation. Such a formation is named 
spinodal decomposition. When 𝑑3𝑓/𝑑𝜙3 > 0  and between the two minima, only 
sufficiently large global perturbations can make phase separation happen. Such an 
approach is called nucleation. Their boundary is named spinodal line. Now, if the free 
energy density function is symmetric, when 𝜙  lies outside the two minima, phase 
separation cannot happen. The boundary determining whether phase separation can take 
place or not is called binodal line. 

 
Based on the criteria above, we plotted the phase diagram of a binary mixture. In fig. 4, we 
represent the initial concentration by 𝜙 in the x-axis and vary 𝜒 in the y-axis. The region 
confined by the spinodal line is the unstable region, in which separation can take place 
under any local perturbation. By contrast, the region between the binodal line and the 
spinodal line is the metastable region, where only sufficiently large global perturbations 
can initiate separation. 

 
Figure. 4: Binary phase diagram. The binodal line shows the boundary between conditions 



under which phases can and cannot separate. The spinodal line shows the boundary 
between two different formations: spinodal decomposition and nucleation. The area 
confined by spinodal line is the unstable region while the area between the bimodal line 
and spinodal line is the metastable region. 
 
As mentioned above, our system is a ternary mixture system consisting of two multivalent 
proteins and water, which is a bit more complicated. To capture the basic features of three-
component phase separation, we used a similar theoretical model for simulation. The free 
energy density 𝑓 is now written in the unit of 𝑘%𝑇 as: 

𝑓 = 𝜙< ln𝜙< + 𝜙3 ln𝜙3 + 𝜙A ln𝜙A + 𝜒<B3𝜙<𝜙3 + 𝜒<BA𝜙<𝜙A + 𝜒3BA𝜙3𝜙A +
𝜆<
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+
𝜆3
2
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𝜆A
2
|∇𝜙A|3, 

where 𝜙< denotes the first multivalent protein (or example FKBP f), 𝜙3  denotes the 
second multivalent protein (for example Frb) and 𝜙A	denotes water. An intrinsic relation of 
the three is given by: 

𝜙< + 𝜙3 + 𝜙A = 1 
Phenomenologically speaking, 𝜙< and 𝜙3 condensate together and separate from 𝜙A. 
For computational convenience, 𝜒<B3 and 𝜒<BA are assumed to have values above 2 and 
𝜒3BA  below 2. A ternary phase diagram is calculated in a similar way by determining 
whether 𝜙< and 𝜙A	separate and whether 𝜙3 and 𝜙A separate. The results are shown 
in figure 5.    

 
Figure. 5: Ternary phase diagrams. (A) χ<B3 = 0 ; χ<BA = 8 ; χ3BA = 3 ; (B) 	χ<B3 = 0 ; 
χ<BA = 8; χ3BA = 4. 
 
The phase diagram only provides a rough approximation of where phase separation can 
happen; it is insufficient to predict what happens after the separation. Hence, we further 
recur to the continuum model first proposed by Cahn and Hilliard to simulate a dynamic 
process.  

𝜕𝑐
𝜕𝑡 = ∇ ⋅ (𝑀∇𝜇) 



𝜇 =
𝑑𝑓
𝑑𝑐 − 𝜆∇

3𝑐 

We used the finite element method in a 100×100 mesh and selected the Neumann 
boundary condition to solve the partial differential equations above. The Crank-Nicolson 
method was used for time-stepping with a footstep of 2.0 × 10-3. The initial composition is 
given by adding a perturbation of strength 10-2 to a homogenous sate. A typical result is 
given as follows:      

  A                            B 

 
Figure. 6: Simulation for dynamic evolution of phase separation under χ<B3	= 0, χ<BA	= 3, 
χ3BA  = 4. (A) The concentration distribution of ϕ< ; (B) The centration of ϕ<  on the 
sampled red dotted line in (A). 
 
We further adjusted the interaction strength between the two proteins, thus affecting both 
χ<BA  and χ3BA . As χ  increases, indicating a stronger interaction, the time for phase 
separation to occur is decreased, which is in accordance with our experimental results. 

 
Figure. 7: Simulation of phase separation under different interaction strengths. The 
stronger the interaction, the faster the separation emerges. 
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and passive phase transitions 
 

Simulation for metabolic regulation with phase separation 
_______________________________________________________________________________________________ 
 

Before carrying out actual experiments on metabolic regulation, we conducted several 
computational simulations. 
 
First, a conceptual model was established. To simplify the model, we capture the basic 
features of phase separation as compartments. We assumed that there are two boxes with 
equal volumes, one with dichotomous separate composition and the other with a uniform 
mixture. They are shown in Fig. 1 to represent the situations with and without phase 
separation, respectively. In this instant, the total amount of enzyme and substrate are 
identical in both boxes. The difference is that enzyme and substrate are distributed 
homogeneously in the uniform mixture, while they are divided into two parts in the 
separated case. The volumes of the two parts are denoted by χV and (1-χ)V, which add 
up to V, which is the total volume for both boxes. The enzyme is condensed in the χV part, 
and we assumed that its concentration is enhanced by p. The enzyme concentration is 
then written as p[E]0. To guarantee that the total amount of enzyme remains unchanged, 

the enzyme concentration in the other part is automatically  <BMN
<BN

[𝐸]8. The substrate is 

treated in the same way: q[S] in the χV part and  <BRN
<BN

[𝑆]  in the (1-χ)V part. For 

convenience, we stress here that p is assumed to be a number larger than one in all 
subsequent cases, but there is no limit on q. 

 

Figure. 1: Illustration of a dichotomous separate box and a uniform box. 
 
Next, we coupled them with a typical enzyme kinetic reaction model shown in Fig. 2. 
Considering a quasi-steady-state and the conservation of enzyme, the instantaneous 
reaction rate can be expressed using the Hill equation: 

v8 =
𝑘UVW[𝐸]WXW[𝑆]Y

𝐾[ + [𝑆]Y
=
𝑘UVW[𝐸]WXW

1 + \𝐾][𝑆]^
Y 								(1) 



 

Figure. 2: Mathematical representation of typical enzymatic kinetic reaction. 
 
Thus, the instantaneous amounts of product in the two cases are: 
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To see the effect of how separation affects reaction rate, we take the quotient of the two 
and define it as 𝑄t : 
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Then if  𝑄t > 1, separation accelerates reaction; if  𝑄t < 1, separation decelerates reaction. 
 
It can easily be seen that the effect of enzyme concentration is nearly linear. Thus, even 
when the enzyme condenses, if the substrate still remains uniformly distributed, i.e. p > 1 
and q = 1, it has no effect on the reaction rate. In other words, 𝑄t  = 1 once q = 1. To 
conclude, if we aim to alter the reaction rate through phase separation, a heterogeneous 
distribution of substrate must be satisfied.   
 
From another perspective, we can regard equation (4) as a relation between the dependent 
variable Q ̃ and the independent variable [𝑆]/𝐾u under parameters p, q and χ. Here are 
some typical calculation results: 

 
Figure. 3: (A) p > 1, q > 1. The reaction is significantly accelerated when [𝑆]/𝐾u is small 



while there are no apparent effects when [𝑆]/𝐾u is large. (B) p > 1, q < 1. Reaction is 
decelerated when [𝑆]/𝐾u is small while there are no apparent effects when [𝑆]/𝐾u is 
large 
 
Based on the calculations, when q > 1, the enzyme and substrate condense in the same 
part and the reaction is accelerated; when q < 1, the enzyme and substrate condense in 
different regions, thus inhibiting the reaction. But in both cases, observable changes only 

take place when [x]
yz

 is small. The smaller [x]
yz

 is, the more obvious the changes become. 

 
We also varied the Hill number n to see what differences will emerge. As expected, the 
larger n is, the more sigmoid the kinetic curve becomes, and the more significant the 
acceleration. 

 
Figure. 4: Positive cooperative binding promotes the acceleration process. 
 
To sum up, we arrived at several rough conclusions. For noticeable enhancement to 
happen, the system requires:  
1. enzyme and substrate condensing in the same droplet 
2. a relatively large KM 

In addition, positive cooperative binding increases the acceleration. 
 
But how to condense the enzyme and substrate together? Since the diffusion velocity is 
generally larger than the reaction rate, if the substrate diffuses normally down the 
concentration gradient, normal distribution will almost eliminate any heterogeneous 
distribution of substrate instantaneously. We simulated this process by coupling reaction-
diffusion equations with the previously described formula to model phase separation. 
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Figure. 5: Dynamic process of metabolism with and without phase separation when 
substrate diffuses normally down the concentration gradient. The four columns represent 
the concentration distribution of the enzyme, substrate, and product in a normalized plot, 
and the average substrate and product concentration, respectively. The upper and lower 
groups represent the simulations with and without phase separation, respectively. 
 

 
Figure. 6: The average product concentration over time. When substrate diffuses normally 
down the concentration gradient, the groups with and without phase separation show a 
slight difference. 
 
Fortunately, if the substrate has a higher solubility in the dense oil phase, once the enzyme 
droplets form, the substrate can be attracted to the droplet. Hence, enzyme and droplet 
both condense in the same droplet. It is possible to anticipate a significant acceleration of 
reaction as predicted by the previous conceptual model since p > 1 and q > 1. In practical 
computation, the substrate is incorporated in the free energy density expression and 
diffuses along the chemical potential as well. The complete equations are specified as 
follows: 
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Figure. 7: Dynamic metabolic process with and without phase separation when substrate 
condenses together with the enzyme. The four columns represent the concentration 
distribution of the enzyme, substrate, and product in a normalized plot, and the average 
substrate and product concentration, respectively. The upper and lower groups represent 
the simulations with and without phase separation, respectively.  

 
Figure. 8: The average product concentration over time. When the substrate condenses 
together with the enzyme, phase separation accelerates the reaction. (A) n = 1; (B) n = 4. 
Positive cooperative binding demonstrates a positive effect. 
 
Judging by the simulation results, when the substrate has a higher solubility, the reaction 
rate is indeed increased. Incidentally, positive cooperative binding also had a positive effect 
in this simulation. 



Generalized from the conceptual model and dynamic simulation, we were finally able to 
attain the two conditions for accelerating the reaction: 
1. the substrate or intermediate has a higher solubility in the droplet phase 
2. the reaction has a relatively large KM 
 


