

关于我们:

Jilin_China 是来自吉林大学的 iGEM(国际遗传工程机器大赛)团队,团队已经有 5 年的历史,每年都会去美国麻省理工学院参加比赛。我们的目标是以基因作为生物元件,通过合成生物学的思想,构建一个新的系统来实现特定的功能,如疾病治疗、污水处理、工业生产等。

由于合成生物学有着广阔的前景和应用价值,值得全社会的关注。

了解更多

带你看看 合成生物学

----高中版

首次参赛,用大肠杆菌降解微囊藻毒素;

构建检测并降解甲醛的枯草芽孢杆菌;

利用肿瘤细胞的厌氧微环境,设计含有 凋亡蛋白基因的双歧杆菌系统来治疗肿 瘤;

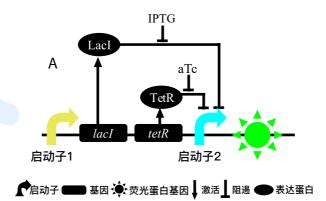
大肠杆菌中的 Geneguard 系统感受苯酚刺激并对苯酚进行降解,同时 TA 系统控制种群密度。

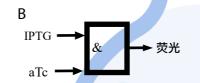
吉林大学 吉林大学教务处

生命科学学院 艾滋病疫苗国家工程实验室 分子酶学工程教育部重点实验室

AN THE WELL WAS THE WAY WELL WAS THE WAY WELL WITH THE WAY THE

1. 你了解基因工程么?


在我们的教材上,已经初步了解了什么是基 因工程,是以分子生物学和遗传学为基础,科学 家们按照他们设计的蓝图,在体外合成 DNA 序 列,然后导入受体细胞,改变其遗传性状。基因 工程中很重要的一步是基因表达载体的构建,科 学家把表达载体上的基因分成了几个部分。比如 启动子、目的基因、终止子,他们各司其职共同 完成基因的表达。如下图中的基因表达载体:


2. 什么是合成牛物学?

基于基因工程,并与信息科学、化学、工程 学、计算机科学等学科交叉,而诞生的一门新的 生物学分支学科 ---- 合成生物学。

合成生物学的主要目标是工程化、模块化地 设计生物,比如一个细胞,让它可以像一个机器 一样工作。 而什么又是工程化、模块化的设计呢?通俗来讲,就是把一些元件(BioBrick),比如之前我们提到的启动子、基因等各种表达载体上的各个组分拼装在一起,之后再把他们组合在一起形成电路(circuit),从而形成了合成生物学中常说的遗传线路(genetic circuit),可与电路工程学的概念相类比。这样就能像电路一样实现DNA的生物学功能,比如这个基因"与"门:

如图所示,lacl与 tetR 基因分别编码 Lacl与 TetR 这两个蛋白。而 Lacl与 TetR 都可以抑制启动子 2,使其下游的荧光蛋白无法表达。IPTG与 aTc 分别为这两个蛋白的阻遏物。所以当 IPTG与 aTc 同时存在时就可以在细胞中看见荧光。这就如同电路中的"与"门。只有当两者同时存在时,才能得到荧光。

基因回路构建完成后,人们通过这些基因元件的表达来执行功能,定时定量地表达基因产物,这就是遗传装置(genetic device)。通过遗传装置的功能组合成完整的系统(system)去解决一些问题、实现一些功能,这就是合成生物学啦!

3. 合成生物学有哪些应用?

在合成生物学的发展历史上,有一个"化污为电"的故事。美国国内每天都要治理超过1260亿升的污水,处理成本极高,为解决这个问题,在2003年,科学家们将微生物的两个特点——可处理污水、代谢过程中可产生自由电子,结合在了一起:他们将污水在微生物燃料电池中灌满,并且在电池内接种改造的可处理污水的金属环原地杆菌的菌株,又在阴阳两极接上一根导线,在短短几小时内,细菌就可以对污水进行净化,并且产生了一定的电能。在后来的研究中,科学家通过控制菌群的数量,还可以有更高的能源产出。

当然,除了这样一个"化污为电"的故事以外, 还有燃料生产、病菌检测、肿瘤治疗等多种多样 有意思、有意义的合成生物学产品,都可以为社 会带来福音~

如果你因为这个简短的介绍而对合成生物学产生了兴趣,可以关注这个网站!

