2018 University of Iowa International Genetically Engineered Machine Team Dr. Craig Ellermeier's Lab, Microbiology and Immunology Department Brynn Kyleakin Helm and Katherine Amick

iGEM Tube Labeling Key

ID	Description	Date	Concentration
А	Strain 2978 Miniprep	26June2018	304 ng/uL
В	Strain 2979 Miniprep	26June2018	235.2 ng/uL
С	P. denitrificans hpdH Clean-up	21June2018	2.9 ng/uL
D	P. denitrificans mmsA Clean-Up	21Jun2018	2.3 ng/uL
E	P. putida mmsA Clean-up	21June2018	5.6 ng/uL
F	P. putida hpdH Clean-up	21June2018	9.2 ng/uL
G	P. denitrificans mmsR Eco/Pst	14June2018	18 ng/uL
Н	741 Miniprep	13July2018	108.3 ng/uL
I	733 Miniprep	13July2018	36.3 ng/uL
J	P. denitrificans hpdH Gel Purify	17July2018	71.1 ng/uL
K	P. denitrificans mmsA Gel Purify	17July2018	48.3 ng/uL
L	P. putida hpdH Gel Purify	17July2018	61.6 ng/uL
М	P. putida mmsA Gel Purify	17July2018	42.8 ng/uL
N	P. denitrificans mmsA Miniprep (from liquid culture A)	19July2018	145 ng/uL
0	P. denitrificans mmsA Miniprep (from liquid culture D)	19July2018	81.9 ng/uL
Р	P. denitrificans hpdH Miniprep (from liquid culture A)	19July2018	119.2 ng/uL
Q	P. denitrificans hpdH Miniprep (from liquid culture C)	19July2018	105.3 ng/uL
R	P. denitrificans hpdH (from plate J #2) Miniprep	26July2018	199.9 ng/uL
S	P. denitrificans mmsA Miniprep (from plate #2 K)	26July2018	243.5 ng/uL

Т	P. denitrificans hpdR Miniprep (from	26July2018	263.6 ng/uL
	В)		

U	P. denitrificans hpdH Miniprep (from culture E)	27July2018	149.0 ng/uL
V	P. denitrificans mmsA Miniprep (from culture A)	27July2018	162.0 ng/uL
W	P. denitrificans hpdR Miniprep (from culture #5)	27July2018	78.1 ng/uL
X	P. denitrificans mmsR Miniprep (from culture #1)	27July2018	94.1 ng/uL
Υ	P. denitrificans hpdH Miniprep (from culture F)	01Aug2018	165.7 ng/uL
Z	P. denitrificans hpdH Miniprep (from culture #6)	01Aug2018	296.1 ng/uL
#	P. denitrificans hpdH Miniprep (from culture H)	01Aug2018	268.7 ng/uL
*	P. denitrificans hpdR Miniprep (from culture #7)	01Aug2018	89.6 ng/uL
(trian gle)	P. denitrificans hpdR Miniprep (from culture #8)	01Aug2018	79.6 ng/uL

Objective #1: We were given a plate prepared from plasmid strains ECE 741 and ECE 733 by Dr. Ellermeier. We subbed both plasmids onto a new LB+AMP plate and prepared overnight cultures.

<u>Results</u>: Both plasmids showed growth. More growth with the ECE 741 plasmid. ECE 733 had very few colonies. Liquid cultures were very turbid.

13June2018:

<u>Objective #1</u>: Prepare ECE plasmids for transformation via mini-prep. 2mL of liquid cultures were used. Remaining 3mL received glycerol and were frozen.

<u>Results</u>: Plasmids were kept in the freezer. The 741 plasmid with concentration of 118 ng/uL were used for restriction digest.

Objective #2: Run a PCR to evaluate the *P. denitrificans* and *P. putida* mmsR and hpdR genes used in 2017.

Results: PCR products run on a gel on 14June2018.

14June2018:

Objective #1: Run yesterday's regulator PCR products on a gel.

*These were split into two gels because the first was not properly loaded.

<u>Results:</u> Only bands for the two *P. denitrificans* genes. Consistent with earlier experiments done by Dr. Ellermeier. *P. putida* genes were thrown out before gel extraction.

Objective #2: Extract DNA from the PCR gel run previous. Will be used for a restriction digest.

Results: P. denitrificans hpdr: 40.8 ng/uL

P. denitrificans mmsr: 40.6 ng/uL

Objective #3: Digest plasmids and regulator genes for ligation. (50uL Digest)

Objective #4: Purify DNA from restriction digest via cleanup.

Results: Plasmid 741: 25.8 ng/uL

P. denitrificans hpdR: 37.5 ng/uL

P. denitrificans mmsR: 18 ng/uL

Objective #1: Run a gel to ensure restriction digest worked.

Lane #1: 100bp Ladder

Lane #2: 5uL Plasmid 741 Digest + 2uL Loading Dye

Lane #3: 5uL hpdR Digest + 2uL Loading Dye

Lane #4: 5uL mmsR Digest + 2uL Loading Dye

Lane #5: 5uL mmsR Digest + 2uL Loading Dye

*possible contamination in Lane #3

Results: Lanes 3-5 had bands. Plasmid 741 did not. Will have to be redone.

Objective #2: Restriction digest of both plasmids 741 and 733. (50uL Digest)

Objective #3: Digest cleanup of plasmids 741

and 733.

Results: Plasmid 741: 23.7 ng/uL

Plasmid 733: 1.9/2.5 ng/uL

Objective #4: Run plasmid digest out on gel.

Lane #1: 100bp Ladder

Lane #2: 5uL Plasmid 733 Digest

+ 2uL Loading Dye

Lane #3: 5uL Plasmid 741 Digest

+ 2uL Loading Dye

18June2018:

Objective #1: Redo mini-prep for both Plasmids 741 and 733.

Results: Apparently wrong protocol. Start over.

Objective #2: Redo mini-prep for both Plasmids 741 and 733.

Results: Plasmid 741: 187.7 ng/uL

Plasmid 733: 288 ng/uL

Objective #3: 10uL Restriction Digest on Plasmids 733 and 741.

Objective #4: Run Plasmid digest products on gel.

Lane #1: 100bp Ladder

Lane #2: 5uL Plasmid 741 + 2uL Loading Dye

Lane #3: 10uL Plasmid 741 Digest + 2 uL Loading Dye

Lane #4: 5uL Plasmid 733 + 2uL Loading Dye

Lane #5: 10uL Plasmid 733 Digest + 2uL Loading Dye

Results: 1kB band dropped, redo.

Objective #5: 40uL Digest on Plasmids 733 and 741.

19June2018:

Objective #1: Cleanup digest on plasmids from yesterday.

Results: Plasmid 741: 31.5/22/21.6 ng/uL

Plasmid 733: 9.9/8.6/9.3 ng/uL

Objective #2: Run cleanup digests on gel.

Lane #1: 100bp Ladder

Lane #2: 5uL Plasmid 741 Digest + 1uL Loading

Dye

Lane #3: 5uL Plasmid 733 Digest + 1uL Loading

Dye

Results: 1kb Band for 741.

Objective #3: Ligation of *P. denitrificans* hpdR and mmsR into Plasmid 741.

Vector: 10x Master Mix +2uL Plasmid 741 + 0uL

Insert Gene + 6.5uL H2O + .5 Ligase

hpdR: 10x Master Mix + 2uL Plasmid 741 + .4uL hpdR + 6.1uL H2O + .5

Ligase

mmsR: 10x Master Mix + 2uL Plasmid 741 + .8uL mmsR + 5.7uL H2O +

.5 Ligase

Objective #4: Ligation of *P. denitrificans* hpdR and mmsR into Plasmid 741.

Vector: 3uL Plasmid 741 + 0uL Insert Gene + 2uL H2O + 5uL Master Mix

hpdR: 3uL Plasmid 741 + .6uL hpdR + 1.4uL H2O

mmsR: 3uL Plasmid 741 + 1.2uL mmsR + .8uL H2O

Objective #5: PCR of promoters P. denitrificans and P. putida mmsA and hpdH.

Objective #6: Transformation of *P. denitrificans* mmsR and hpdR into *E. coli* competent cells.

60uL E. coli competent cells + 5uL DNA

Use LB after heat shock

Plate on LB+AMP

20June2018:

Objective #1: Gel to evaluate promoter PCR products.

Lane #1: 100bp Ladder

Lane #2: 5uL P. putida hpdH + 2uL Loading Dye

Lane #3: 5uL P. denitrificans hpdH + 2uL Loading Dye

Lane #4: 5uL *P. denitrificans* mmsA + 2uL Loading Dye

Lane #5: 5uL P. putida mmsA + 2uL Loading Dye

<u>Objective #2:</u> Redo transformation. Not enough ligated product. Repeat ligation.

Vector: 3uL Plasmid 741 + 0uL Insert Gene + 2uL H2O + 5uL Master Mix

hpdR: 3uL Plasmid 741 + .6uL hpdR + 1.4uL H2O

mmsR: 3uL Plasmid 741 + 1.2uL mmsR + .8uL H2O

Objective #3: Repeat transformation of P. denitrificans mmsR and hpdR into E. coli competent cells.

60uL E. coli competent cells + 5uL DNA

Use LB after heat shock

Plate on LB+AMP

21June2018:

Objective #1: Count colonies from transformation growth.

Vector Plate #1: 18 White Colonies

Vector Plate #2: 64 White Colonies

P. denitrificans hpdR Plate #1: 60 White Colonies

P. denitrificans hpdR Plate #2: Over 200 White Colonies

P. denitrificans mmsR Plate #1: 7 White Colonies

P. denitrificans mmsR Plate #2: 45 White Colonies

Objective #2: Pick 8 white colonies from each transformation, restreak.

Objective #3: Cleanup on promoter PCR products.

Results: P. putida mmsA: 5.6 ng/uL

P. putida hpdH: 9.2 ng/uL

P. denitrificans mmsA: 2.3 ng/uL

P. denitrificans hpdH: 2.9 ng/uL

22June2018:

<u>Objective #1</u>: Pick white colonies from transformation plates from 21June2018. Restreak.

Objective #2: Redo Promoter PCR.

23June2018:

Objective #1: Start overnights of white colonies from mmsR transformation plates from 22June2018.

Results: *P. denitrificans* hpdR transformation plates unsuccessful.

Objective #2: Run Promoter PCR products from 22June2018 on a gel. Look for 500bp Bands.

Objective #3: Gel extraction and cleanup of Promoter PCR products.

Objective #1: Miniprep *P. denitrificans* mmsR transformant from liquid culture.

Results: P. denitrificans mmsR: 26.2 ng/uL

Objective #2: Perform 10uL digest on *P. denitrificans* mmsR.

Objective #3: Run mmsR digest on a gel next to uncut plasmid.

Lane #1: 100bp Ladder

Lane #2: P. denitrificans mmsR digest

Lane #3: Uncut Plasmid 741

Objective #4: Prepare new liquid cultures of Plasmids 741 (strain #2979) and 733 (strain #2978).

Objective #5: Restriction digest of *P. denitrificans* hpdR (10uL digest).

Objective #6: Run P. denitrificans hpdR digest on gel.

Objective #7: Restriction digest of both Plasmids 733 and 741 (50uL digest).

Objective #8: Run gel of Plasmids digest.

Lane #1: 100bp Ladder

Lane #2: 15uL Plasmid 733 Digest + 4uL Loading Dye

Lane #3: 15uL Plasmid 733 Digest + 4uL Loading Dye

Lane #4: 15uL Plasmid 733 Digest + 4uL Loading Dye

Lane #5: 15uL Plasmid 733 Digest +4uL Loading Dye

Lane #6: 15uL Plasmid 741 Digest + 4uL Loading Dye

Lane #7: 15uL Plasmid 741 Digest + 4uL Loading Dye

Lane #8: 15uL Plasmid 741 Digest + 4uL Loading Dye

Lane #9: 15uL Plasmid 741 Digest + 4uL Loading Dye

Objective #9: Gel extraction of plasmids digest.

Objective #10: Miniprep Plasmids 741 and 733.

Results: Plasmid 741 (done by Katie): 161.1 ng/uL

Plasmid 733 (done by Katie): 82 ng/uL

Plasmid 741 (done by Kyleakin): 106.5 ng/uL

Plasmid 733 (done by Kyleakin): 89.9 ng/uL

Objective #11: Restriction digest on all minipreps of Plasmids 741 and 733. (50uL Digest)

Objective #12: 10uL Digest on white cultures of

mmsR and hpdR.

Results: hpdR: 163.6 ng/uL

hpdR: 74.6 ng/uL

mmsR: 40.7 ng/uL

mmsR: 39.4 ng/uL

Objective #13: Not-1 Digest of P. denitrificans

mmsR transformant.

Objective #14: Gel of Not-1 P. denitrificans mmsR

transformant.

27June2018:

29July2018:

11July2018:

Objective #1: Miniprep Plasmids 741 and 733 from overnight cultures.

Results: Plasmid 741 A: 115.4 ng/uL

Plasmid 741 B: 112.5 ng/uL

Plasmid 733 A: 88.2 ng/uL

Plasmid 733 B: 88.9 ng/uL

Objective #2: Restriction digest all Plasmid minipreps.

Objective #3: Run Plasmid minipreps on a gel.

Lane #1: 100bp Ladder

Lane #2: Plasmid 741 A

Lane #3: Plasmid 741 A

Lane #4: Plasmid 741 B

Lane #5: Plasmid 741 B

Lane #5: Plasmid 741 B

Lane #6: Plasmid 733 A

Lane #7: Plasmid 733 A

Lane #8: Plasmid 733 B

Lane #9: Plasmid 733 B

Lane #10: Plasmid 733 A

Lane #11: Plasmid 733 B

Objective #4: Measure nanospecs of digested Plasmids.

Results: Plasmid 733: 40 ng/uL

Plasmid 733: 41.4 ng/uL

Plasmid 741: 62 ng/uL

Plasmid 741: 58.7 ng/uL

Objective #5: Run a gel of digested plasmids and regulators.

Lane #1: 100bp Ladder

Lane #2: Digested Plasmid 741

Lane #3: Dr. Ellermeier's 733

Lane #4: Digested hpdR

Lane #5: Digested mmsR

Results: Plasmid 733 was smeared. Plasmid 741 was okay.

Objective #5: Cleanup of Plasmid 741 Digest.

Objective #6: More nanospecing.

14June2018 mmsR: 37.5 ng/uL

28June2018 hpdR: 163.6 ng/uL

Plasmid 741: 32.6 ng/uL

Objective #7: Gel of 14June2018 mmsR, 28June2018 hpdR and Plasmid 741.

Results: Plasmid 741 was smeared. hpdR and mmsR failed.

Objective #8: Diagnostic gel to find right good hpdR genes. 5uL of DNA + 1uL Loading Dye.

Lane #1: mmsR (?)

Lane #2: hpdR with 2.2 ng/uL

Lane #3: mmsR with 19 ng/uL (?)

Lane #4: hpdR (?)

Lane #5: P. denitrificans mmsR with 22 ng/uL

Lane #6: P denitrificans hpdR with 22 ng/uL

Lane #7: P. denitrificans hpdR with 18 ng/uL G

Lane #8: P. denitrificans with 74.6 ng/uL

Lane #9: mmsR (?)

Lane #10: hpdR with 37.5 ng/uL

Lane #11: mmsR with 165.6 ng/uL

Results: Only **G** is viable.

______ · , · · · · · ·

13July2018:

Objective #1: Miniprep Plasmids 733 and 741.

Results: Plasmid 741: 108.3 ng/uL H

Plasmid 733: 38.3 ng/uL I

Objective #2: Ligation of Plasmids and regulator genes.

25uL 2x Master Mix + 1.5uL Plasmid 741 + 1uL mmsR

25uL 2x Master Mix + 1.5uL Plasmid 741 + 1uL hpdR

Objective #3: Transform regulator plasmids into E. coli.

16July2018:

Objective #1: Diagnostic digest of mmsR and hpdR transformants. Used Nco1 and PFLF2.

Objective #2: Gel to evaluate diagnostic digest.

Lane #1: 100bp Ladder

Lane #2: mmsR Nco1/PFLF2 Digest #1

Lane #3: mmsR Nco1/PFLF2 Digest #2

Lane #4: hpdR Nco1/PFLF2 Digest #5

Lane #5: hpdR Nco1/PFLF2 Digest #6

Results: Both mmsR and hpdR were successful.

mmsR #1: 96.6 ng/uL

mmsR #2: 79.5 ng/uL

hpdR #5: 116.7 ng/uL

hpdR #6: 79.9 ng/uL

Objective #3: Submit mmsR and hpdR transformants for sequencing. Submit both SEPARATE forward and reverse primers.

10uL DNA + 1uL Primer Dilution (4uL stock primer to 16uL H2O)

17July2018:

Objective #1: Nanospec gel purified Promoter products.

Results: P. denitrificans hpdH: 64.4/71.1 ng/uL

P. denitrificans mmsA: 49.1/48.3 ng/uL

P. putida hpdH: 81.1/61.6 ng/uL

P. putida mmsA: 2/42.8 ng/uL

Objective #2: PCR Cleanup of Plasmid 733 digestion.

Results: Plasmid 733 Digestion: 14.7 ng/uL

Objective #3: Perform transformation of hpdH and mmsA (the high concentrations on the gel then gel purification)

> 2.5uL 2x Master Mix + 1.5uL Vector (Plasmid 741) + 1uL Insert (Promoter Genes)

19July2018:

Objective #1: Run a diagnostic PCR and diagnostic digest on hpdH (now known as **J**) and mmsA (now known as **K**) cultures.

Results: Both looked good. Got expected bands. Cleared for sequencing.

20July2018:

Objective #1: Turn in hpdH (**J**) and mmsA (**K**) transformants for sequencing.

23July2018:

<u>Results:</u> Sequencing of regulators showed that we submitted the same mmsR transformant twice. Resubmitted for hpdR.

24July2018:

<u>Objective #1:</u> Issues with sequencing the promoter transformants the first time (wrong protocol).

*Not enough of cultures **J** and **K**, so we redid overnights.

Objective #2: Start overnights on mmsR/Plasmid 741 transformant as well.

25July2018:

Objective #1: Miniprep **J** (hpdH) and **K** (mmsA), as well as mmsR/Plasmid 741 transformant.

Results: mmsA miniprep: 7.3/11.2 ng/uL

hpdH miniprep: 9.3/20.4 ng/uL

*results too low. Will re-miniprep tomorrow.

26July2018:

Objective #1: Miniprep mmsA, hpdH and hpdH 5 cultures.

Results: mmsA: 243.5 ng/uL

hpdH: 263.6 ng/uL

hpdH 5: 199.9 ng/uL

* these were the wrong genes to prepare liquid cultures.

Objective #2: Prepare overnights from correct mmsA and hpdH stocks.

27July2018:

Objective #1: Miniprep mmsA/hpdH cultures as well as mmsR/hpdR cultures. These were taken from previously grown plates labeled in sections. We took mmsA from section A, hpdH from section E, hpdR from section 5 and mmsR from section 1.

Results: hpdH (E): 149 ng/uL (now known as **U**)

mmsA (A): 167 ng/uL (now known as **V**)

hpdR (5): 60.5 ng/uL (now known as **W**)

mmsR (1): 94.1 ng/uL (now known as **X**)

Objective #2: Sequence hpdH (**U**), hpdR (**W**) and mmsA (**V**).

31July2018:

<u>Objective #1:</u> Begin transformation into *B. subtilis*. Plasmid/gene combos will need the following growth media:

phpdH-lux and PmmsA-lux need MLS plates pmmsR-xyl need kanamycin plate

Bacillus subtilis transformation:

1.Prepare the following media in a tube: 30uL 1M MgSO4 + 9mL H2O + 1mL 10x MC

2.Inoculate a single colony of desired recipient into 2mL of the above media. Incubate for 3-5 hours at 37 degrees C.

3.Put 500uL of above culture with 5uL chromosomal DNA. Incubate for 1-2 hours at 37 degrees C.

4.Place on selective media and incubate overnight at 37 degrees C.

*First transformation is PmmsA-lux into py79 strain of *B. subtilis*.

01Aug2018:

Objective #1: Run a diagnostic gel to evaluate our hpdH and hpdR transformants grown up on plate.

Results: hpdH looked okay. hpdR does not.

02Aug2018:

Objective #1: Begin overnights on py79 x PmmsA-lux and py79.

Objective #2: Create frozen stocks of PmmsA-lux, PhpdH-lux, and PmmsR-xyl

500uL of 50% Glycerol in screw-cap tube +1mL Overnight culture (2 tubes per culture)

03Aug2018:

<u>Objective #1:</u> Remember that frozen stocks from overnights are from sequenced plates. Overnights restruck and then placed in 5mL LB+AMP.

08Aug2018:

Objective #1: Began overnights for mmsA-lux (strain PIA101), mmsR-xyl (strain PIA102) and hpdH-lux (strain PIA 103) in LB+AMP.

Objective #2: Transformed strain 101 into py79.

09Aug2018:

Objective #1: Remember that py79 x PIA 102 and py79 x PIA 101 x PIA 102 should be plated on Kanamycin. Stored with 600uL pg 50% Glycerol.

Objective #2: Miniprep overnights from 08Aug2018.

Results: PIA 101: 157.6 ng/uL (now known as AA)

PIA 102: 76.1 ng/uL (now known as **AB**)

PIA 103: 87.7 ng/uL (now known as **AC**)

10Aug2018:

Results: Transformation of PIA 102 into py79 x 101 looked off. Plate with PIA 103 looked off as well. We will redo transformation of 102 into py79 x 101.

Objective #1: Prepare transformation growth media for *B. subtilis*.

11Aug2018:

Objective #1: Prepare transformation growth media and innoculate one colony. One tube for py79 and one for py79 x 101.

Results: B. subtilis cultures did not grow up.

13Aug2018:

Objective #1: Prepare *B. subtilis* transformation cultures py79 and py79 x 101. Transform 102 into py79 x 101.