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1 Summary

Integrating synthetic biology to mimic real-life behaviors is a challenging
task without mathematical representation and understanding of modeling
parameters. Especially when natural biological schemes are complex and
stochastic, to accurately model circuit motif requires correct assumptions
that are later built upon through revision, but at the same time, not too
fine-grain. The aspect of why real-life circuits behave a certain way could
also be explained through comparison to its alternatives. This investigation
aims to demonstrate the process of deriving a viable model from an abstract
foundation that describes the behaviors of Type I Incoherent Feed-Forward
Loop (IFFL), its comparison to a direct feed-forward (or naive) loop through
various analysis techniques with respect to dynamical inputs, and possible
explanation of the motif’s innocuous appearance in biological processes.

1.1 An Abstract IFFL

Zhang and his colleagues published a paper describing the generic model
of IFFL [1]. Here, the input structure is described as periodic square-wave
function of varying durations. This structure induces the production of an
intermediate protease and a reporter, of which the reporter is quickly de-
graded as the protease reaches its half-activation threshold at long duration
time-steps. This abstract model emphasizes IFFL’s ability to distinguish dis-
tinct temporal structure of the input through identification of the reporter’s
steady-state behavior.
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Figure.1: From Zhang et al. paper, reporter R is quickly degraded by protease X through

Hill’s kinetics. One implication of this interaction would be the tuning of Hill’s coefficient.

A. depicts the general scheme of IFFL with input S, protease X, and reporter R. B.

describes the output behavior of reporter R given two distinct oscillatory inputs: Longer

input duration allows expression of protease X to reach its half-activation threshold and

quickly degrades R, which explains the pulse-like behavior. C. illustates IFFL’s ability to

directly translate its stair-case output to exact duration of on time for the input (count-

ing ability). Same concept can be applied to the reporter’s pulse-like behavior, which

describes a completely different on time duration.

Zhang highlights characteristics of reporter’s output based on param-
eters such as production rate β and endogenous degradation rate γ0, which
we will not go further into details. This general abstract model serves as
a basis for our actual model as it lays down necessary components that
provides desired outputs, such as the interaction of Hill’s kinetics, for the
derivation of system of ordinary differential equations. Zhang derived the
system of ODE above from the following system, where X and R represents
the protease and reporter respectively:
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Analytically solving system yields the following solutions:

X = k2−e−dX (t+C)

dX

R = k1(−e−(C+dX )t+k2)−n((dXKX)n+(−e−(c+dX )t+k2)n)
dR

+ e
−dRt(−e−(c+dX )t+k2)

n

(dxKX )n+(k2−e−(c+dX )t)n

2 Modeling

2.1 Chemical-Inducible Model

This specific IFFL model is designed for induction, where IPTG is the ac-
tivating input that inhibits the inhibition of LacI to pLac, thus clearing the
production pathway for protease mf-Lon and reporter m-Scarlet.

I = Modified Square-wave function
Ṁ = βM

1+L/kp/(1+(I/kI)2)
− αM [M ]

Ṡ = βS
1+L/kp/(1+(I/kI)2)

− αMS
[M ]2

[M ]2+1
[S] − αS [S]

Symbols Description
βM Production rate of mf-Lon
αM Degradation rate of mf-Lon
βS Production rate of m-Scarlet
αS Degradation rate of m-Scarlet
αMS Degradation rate of m-Scarlet by mf-Lon
L LacI concentration
I IPTG concentration
kp Dissociation constant between LacI and pLac
kI Dissociation constant between LacI and IPTG

The denominator aims to highlight the minuscule leakage rate when no
inducer is presented ( βM

1+L/kp
). The term 1 + (I/kI)

2 gives the concentration

of unbound LacI through cooperative reaction. Based on the abstract model,
Hill kinetics is kept for m-Scarlet to induce its pulse-like outputs when the
duration of IPTG input is long. Certain parameters such as kp and kI are
constants found in literature, which facilitates the model fitting process later
on. We begin testing the behaviors of this system of ODE through numeri-
cal calculation using Python’s scipy library. The default method is ODE45.
This is a crucial step as parameter values can be plugged and played based
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on intuition and understanding later.

One thing that we quickly realized is that the expression of Hill’s ki-
netics might not be ideal when dealing with parameter values that are less
than 1. In Zhang’s paper, he carefully selected parameter values that could
best represent the expression output. This translation is often not ideal
when accurate representation of reporter’s expressions are in values below
1. Furthermore, reporter’s pulse-like behavior in Zhang’s paper are exagger-
ated depiction and is almost impossible to demonstrate for small parameter
values. This is because concentration of protease could never reach value
above 1 for the exaggerated degradation to occur. Nevertheless, we believe
that the minimal induced degradation would not be a problem in the model
fitting.

2.2 Model Fitting with Experimental Results

The overarching goal for this specific model to find out whether it is possible
to fit model parameters with results from the Inducer Spin Down test with
WM17 411 + 393.

Fluorescence data were normalized to facilitate model fitting. We be-
gan by using Markov Chain Monte Carlo (MCMC) to find parameter range
that would best fit with the model. Python’s emcee library was used for this
process, and Gaussian noise were added to the calculated data to further
simulate real-life behaviors. Likelihood function was numerically written
and optimized for calculation of the posterior with 1000 burn-steps. The
result yields this following graph where parameters were best fitted. Param-
eter correlations were almost non-existence based on the relative distribution
of parameter values.
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Figure. 2: Triangle graph depicting distribution density of parameter values and relative

correlation to other parameters.

MCMC was not enough for accurate fitting. This is due to the lack of
experimental data, where a total of 18 data points were used to estimate
values for 4 different parameters. The next step was to hard code parameter
values with respect to Period and Duration of input. Below is the parameter
values and fitted curves.
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Symbols Value Units Source

βM 0.16 nM
min MCMC

αM 0.13 min−1

nM Hard-coded

βS 2.21 nM
min Hard-coded

αS 0.01 min−1

nM Hard-coded

αMS 0.26 min−1

nM MCMC
L 0.5 nM Hard-coded
I 100000 nM Conversion from experiment
kp 0.001 nM [2]
kI 1000 nM [2]

Figure. 3: Fitted curves using the above parameter values (Staircase on the left, pulse on

the right)

Fitted curved from these graph are not run with noisy inputs, which
could explain the differences. Furthermore, the nature of the experiments
allows very high noise in expression read-outs: manual induction and spin-
out of chemicals are very prone to errors, not to mention the tedious wait
time for each step following induction could pave pathway to high inaccuracy.
This chemical model, however, could always be improved upon to account for
delay-time induction, although no necessary component would be included
if a highly consistent machine were to perform the experiment (microfluidic
devices).
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2.3 Heat-Inducible Model

Due to the feasibility of performing experiments through chemical induction,
we developed a new heat-induced IFFL model.

ĊI =

{
−α when T = 37◦C

βCI
− dCI

[CI ] else.
[CI ] =

{
0 when T = 37◦C
βCI
dCI

− β1
dCI

e−dCI
t else.

Ṁ = βM
1+[CI ]/kd

− dM [M ]

Ṡ = βS
1+[CI ]/kd

− dMS
[M ]n

[M ]n+1 [S] − dS [S]

For Naive System: Ṡ = βS
1+[CI ]/kd

− dS [S]

Symbols Description
α Degradation rate of CI at 37◦C
βCI

Production rate of CI
dCI

Degradation rate of CI
βM Production rate of mf-Lon
dM Degradation rate of mf-Lon
βS LacI concentration
I IPTG concentration
dS Degradation rate of m-Scarlet
dMS Degradation rate of m-Scarlet by mf-Lon
kd Dissociation constant between CI and promoter

In this system, the promoter inhibitor protein CI is degraded by heat at
high temperature. Model fitting was not performed since there was no data
from experiment. However, comparison between this specific IFFL model
and its naive model was extensively analyzed. These comparative aspects
are IFFL’s temporal structure distinguishing abilities and its response to
noise. For the comparison, the design is such that the term α will completely
degrade the concentration of CI when the temperature is switched to 37◦C.

2.4 Methods and Analysis

2.4.1 Time-input Distinguishing Ability

The ability to detect small differences in signal input is not only appealing
but paramount to signal processing. For this aspect, we implemented the
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following numerical comparison:

With fixed parameter values, we calculated concentration expression
of the reporter using all possible combinations of off-on ratio for the in-
put. Next, the differences of these expressions are represented as function of
euclidean distance. Finally, output are delineated by the vector difference
between the expression of IFFL compared to naive, taken at fixed off time
and different on time, with positive difference (red) being the time ratios
where IFFL is better at distinguishing the input signal from one another.
Example: Take off ratio of 1, and on ratio of 1 and 3. The concentration
expression is calculate with ratio of 1:1 and 1:3 for IFFL and naive. Next, we
calculate the Euclidean distance of the differences between the concentration
function with respect to these two on times, with the result represented as
one value. Finally, the vector value from IFFL is subtracted from the one
in naive to yield a final value indicative of model’s fidelity in information
processing.

The heat maps below are results from this comparison:

Figure. 4: Red squares are indicative of where IFFL outperforms naive at signal pro-

cessing, and shading represents relatively how much better. Notice the symmetry of the

graph through the diagonal. Based on the right heat map, IFFL performs worse as off

time increases since the relative ratio of on time to period is very short. However, when

on time ratio is close or greater than off time, IFFL once again performs better than the

naive model.
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Figure. 5: Subplots representing two comparisons of the same on ratio difference but dif-

ferent off times between IFFL and naive. Left. Input has fixed off time of 1, but different

on time of 2 and 8 (Corresponding to the Off-time = 1, on1 = 2, on2 = 8 on red squares

in Figure. 4). Concentration expression of IFFL is much larger for IFFL than naive,

hence having great difference at most time. Right. Similar graph with off time of 10

(Corresponding to right graph of Figure. 4). Here, difference in concentration expression

is higher than IFFL.

We are also interested to see how the behavior of the heat map behaves
with varying induced degradation rate. Below are the heat maps with fixed
off time of 2, but with 26.2 times and 6.2 times induced degradation (the
heat map in Figure. 4 is 16.2 times induced degradation rate):

Figure. 6: Increase in induced degradation rate improves IFFL’s ability to distinguish

temporal structure.

This behavior makes sense since there will be a wider gap in concen-
tration difference transitioning from stair-case to pulse-like for the reporter
as induced degradation rate increases.
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2.4.2 Noise

With IFFL’s ability to detect small changes in temporal structure from the
input, one would expect that the system would be susceptible to noise. We
performed the following numerical testing for both IFFL and naive model
and compare the variance as direct translation of output’s noisiness. Here,
off-on ratio refers to the time ratio when the heat is turned on (CI degrades
completely) or off, analogous to Period being off + on and Duration being
the on time. Gaussian noise with average value 0 and standard deviation of
0.1 was used for the concentration of CI:

Start with fixed value for off-on ratio, calculate all concentration ex-
pression of m-Scarlet within a specific range of m-Scarlet production rate
(0.35 ≤ βS ≤ 1). Variance is then taken for that specific off-on ratio, then
on ratio is incremented (max 5 on), then off ratio (max 5) is incremented as
on ratio resets to 1. Each variance for respective off-on ratio is the average
variance of concentration expression as function for varying parameter value
range of m-Scarlet production rate.

The graph below illustrates the result of this test and data can be found
in the Supplementary Section:

Figure. 7: Variance as direct translation to noise.
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Figure. 8: Contour graph shows that at off-on ratio of 1:2, variability in concentration of

expression is highest with respect to parameter value range. This variance is still much

lower than that of naive model.

The demonstration of noise damping property of IFFL can be explained
through proportionality effect of mf-Lon. Even with noisy inputs, mf-Lon is
produced accordingly and weakens the effect of stochastic expressions seen in
m-Scarlet. In the case of naive’s high variance, result shows very consistent
noise response through all combination of off and on ratios. Regardless,
IFFL is exponentially more robust to noise than naive.

3 Results

I. IFFL is better at distinguishing small changes in temporal structure, ie.
small off-on ratio.
II. IFFL is better at processing time domain input when ratio of on to its
period is large.
III. IFFL is exponentially more robust to noise than naive due to the pro-
portionality effect of the protease on reporter.

These findings supports the reasons why IFFL is prevalent in real-
life systems. With these results in mind, we hope future iGEM team can
utilize these findings to further explore the field of time-domain information
processing in synthetic biology.
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5 Supplementary Materials

5.1 Variance Test Table as Direct Translation to Noise Re-
sponse

Off On IFFL Average Variance Naive Average Variance
1 1 0.01533882340566167 0.13418271378415284
1 2 0.02187836097282671 0.13418271378415284
1 3 0.005754886844342153 0.13418271378415284
1 4 0.003958342560366722 0.13418271378415284
1 5 0.003155402960724867 0.13418271378415284
2 1 0.007574283020729188 0.13418271378415284
2 2 0.01389145087320129 0.13418271378415284
2 3 0.015895666169373285 0.13418271378415284
2 4 0.005935498143123905 0.13418271378415284
2 5 0.0037181405342439017 0.13418271378415284
3 1 0.004811724265443684 0.13418271378415284
3 2 0.00926761629811609 0.13418271378415284
3 3 0.013525597130485838 0.13418271378415284
3 4 0.007224533785821764 0.13418271378415284
3 5 0.0035019045270745872 0.13418271378415284
4 1 0.0031226758003070555 0.13418271378415284
4 2 0.007279214430683052 0.13418271378415284
4 3 0.010088694635714508 0.13418271378415284
4 4 0.006258872666223699 0.13418271378415284
4 5 0.00384901646694585 0.13418271378415284
5 1 0.0025600645664398554 0.13418271378415284
5 2 0.005072125710890843 0.13418271378415284
5 3 0.0087723345683548 0.13418271378415284
5 4 0.0067162680364338135 0.13418271378415284
5 5 0.004191180349174252 0.13418271378415284


