

Effect of pH and temperature on enzymatic activity

1. General setup of enzyme activity measurements

Aim

To find the conditions (pH and temperature) in which laccase activity is optimal.

Materials

- ABTS[™] buffer (11204530001 Roche)
- ABTSTM (10102946001 Roche)
- Citric Acid Na, HPO, Buffer Solution
- Laccase from T. versicolor (38429 Sigma)

Procedure

COMPONENT	CONCENTRATION
Buffer	100 mM
Laccase	≥0.5 U/mg
ABTS™	0,05 mg/ml

- 1. Add the ABTS to the citric acid Na₂HPO₄ buffer solution.
- 2. Measure it as the blank.
- 3. Add 0.05 mg of laccase to the ABTS buffer solution.
- 4. Mix thoroughly by inverting it.
- 5. Measure at 420 nm for 2 minutes right after mixing the content of the cuvette.
- 6. Calculate the slope (abs/min) of this continuous curve.
- 7. Repeat steps 2-6 at different pH and temperature conditions and compare.

Notes

The reaction is done in 1 mL cuvettes and thus the quantities of the different components are adjusted to that volume of reaction.

References

Effect of pH and temperature on enzymatic activity

M. Enriqueta, Arenas et al. (2003) "Kraft Pulp Biobleaching and Mediated Oxidation of a Nonphenolic Substrate by Laccase from Streptomyces cyaneus CECT 3335" Applied and environmental microbiology, Vol. 69, No. 4 p. 1953–1958.

Cantor, Charles R. and Schimmel, Paul R. (1980) "Biophysical Chemistry, Part I: The Conformation of Biological Macromolecules" Freeman, San Francisco.

Stryer, Lubert (1995) "Biochemistry" 4th Ed. W.H. Freeman and Company, New York.

van Holde, Kensal E.; Johnson, W. Curtis; and Ho, P. Shing. (2006) "Principles of Physical Biochemistry" 2nd Ed. Pearson, New Jersey.

Effect of pH and temperature on enzymatic activity

2. Kinetics assay

Aim

Characterize an enzyme by measuring the initial reaction rates for different substrate concentrations. With this data you can calculate the kinetic constants k_{cat} and K_{M} using the Michaelis–Menten equation.

Materials

- ABTS[™] buffer (11204530001 Roche)
- ABTS[™] (10102946001 Roche)
- Citric Acid Na, HPO, Buffer Solution (pH 4)
- Laccase from T. versicolor (38429 Sigma)

Procedure

- 1. Prepare ABTS solution at concentration 1mg/mL by mixing ABTS in ABTS solution as recommended by the supplier.
- 2. Prepare laccase stock solution (10mg/ml) by mixing the laccase with citric acid Na2HPO4 buffer.
- 3. Add the desired ABTS volume to the desired citric acid Na2HPO4 buffer solution volume (total volume should be 995 μ L if you add 5 μ L enzyme in step 5) into a 1,5 mL polystyrene cuvette.
- 4. Measure it as the blank.
- 5. Add 5 μ L of laccase from the stock (10mg/ml) to the ABTS buffer solution.
- 6. Mix thoroughly by inverting it.
- 7. Measure at 420 nm for 1 minute right after mixing the content of the cuvette.
- 8. Calculate the slope (\triangle Abs/min) of this continuous curve in the initial region (approximately the first 15 seconds if it looks linear).
- 9. Repeat steps 3-8 with different concentrations of substrate. We recommend doing at least duplicates

Notes

The reaction is done in 1 mL cuvettes with ABTS concentrations ranging from 10 μ M to 500 μ M. We recommend to perform all calculations for each concentration prior to starting the experiment.

Effect of pH and temperature on enzymatic activity

Convert the slopes from (Δ Abs/min) to (mM/min) by dividing by the extinction coefficient (the extinction coefficient of the oxidized product is 36 mM⁻¹ cm⁻¹). Plot substrate concentrations as the x values and the reaction rates in mM/min as the y values. If it looks like a smooth saturation curve you can plot the data in a Hanes-Woolf plot and calculate the kinetic constants.

References

Cantor, Charles R. and Schimmel, Paul R. (1980) "Biophysical Chemistry, Part I: The Conformation of Biological Macromolecules," Freeman, San Francisco.

Stryer, Lubert (1995) "Biochemistry," 4th Ed. W.H. Freeman and Company, New York.

van Holde, Kensal E.; Johnson, W. Curtis; and Ho, P. Shing. (2006) "Principles of Physical Biochemistry," 2nd Ed. Pearson, New Jersey.