
Appendix A: How the EnKF works 

The EnKF is essentially a Bayesian inference process that operates via Bayes’ theorem: 

𝑃( 𝝍 | 𝒚 )  ∝  𝑃( 𝒚 | 𝝍 ) 𝑃( 𝝍 ). 

The proportionality constant is simply a normalization constant. Here 𝝍 is a vector containing a 

list of model concentrations and 𝒚 is a vector containing laboratory measurements. According 

to the Bayesian interpretation,  𝑃( 𝝍 ) is the probability density function that 𝝍 is true, before 

looking at the laboratory measurements (prior pdf). 𝑃( 𝒚 | 𝝍 ) is the probability density 

function of measuring the values in 𝒚, given that 𝝍 is true. The result of combining the two pdfs 

through Bayes’ theorem is the probability that 𝝍 is true, given the laboratory measurement 𝒚 

(posterior pdf).  

Under the assumption that all three pdf’s are Gaussian, the three pdfs can be written as: 

𝑃( 𝝍 ) ∝ exp (−
1

2
(𝝍 − 〈𝝍𝒃〉)⊤𝑩−1(𝝍 − 〈𝝍𝒃〉)) 

𝑃( 𝒚 | 𝝍 ) ∝ exp (−
1

2
[𝒉(𝝍) − 𝒚]⊤𝑹−1[𝒉(𝝍) − 𝒚]) 

𝑃( 𝝍| 𝒚 ) ∝ exp (−
1

2
(𝝍 − ⟨𝝍𝒂⟩)⊤𝑨−1(𝝍 − ⟨𝝍𝒂⟩)) . 

In the EnKF, the prior pdf are represented by the outcomes of an ensemble of simulations. 〈𝝍𝒃〉 

is the ensemble-averaged concentrations, and 𝑩 is the covariance matrix derived from the 

ensemble of concentrations. 𝒉 is an operator that ingests the model results and extracts data 

that corresponds to the laboratory measurement, and 𝑹 is the error covariance of the 

laboratory measurements. For most purposes, 𝑹 is assumed to be a diagonal matrix (i.e., the 

errors are not correlated between laboratory measurements of different quantities). 

When the EnKF is applied, all of the members of the prior ensemble gets updated to generate a 

new ensemble, which represents the posterior pdf. As in the case of the prior pdf, the vector 

𝜓𝑎is the ensemble-average of the posterior ensemble and 𝐴is the posterior covariance matrix 

derived from the posterior ensemble. 

To get a feeling of how the EnKF estimates the hidden concentrations, we can explicitly solve 

for 𝝍𝒂, the posterior estimate of all concentrations. It can be shown that [see Kalnay (2002)]: 



〈𝝍𝒂〉 − 〈𝝍𝒃〉 = 𝛿〈𝝍𝒂〉 = 𝑩𝑯⊤(𝑯𝑩𝑯⊤ + 𝑹)−1[𝒚 − 𝒉(〈𝝍𝒃〉)] 

where  

  𝑯 ≡
𝜕𝒉(𝝍)

𝜕𝝍
|𝝍 = 〈𝝍𝒂〉. 

For the simplicity of subsequent discussions, we will assume that ℎ is a linear operator. In other 

words, 

𝒉(𝝍) = 𝑯 𝝍 

𝜕𝒉(𝝍)

𝜕𝝍
= 𝑯   ∀   𝝍 ∈ ℝ𝑛 

In the limit of a single measurement, the estimate reduces to 

𝛿〈𝝍𝒂〉 ∝ 𝐶𝑜𝑣(𝝍, 𝑯𝝍)[𝒚 − 𝑯⟨𝝍𝒃⟩] 

In other words, the difference between the prior ensemble’s estimate of the concentration (i.e., 

the ensemble mean) and the measured concentrations are broadcasted to all of the 

concentrations contained in 𝝍. This broadcasting is done through the prior ensemble 

covariance between all concentrations and the quantity to be measured. This broadcasting 

through the prior covariance is the reason why the EnKF can be used to estimate hidden 

concentrations. 

Aside from that, the estimate from applying the EnKF is also more precise than the prior 

ensemble. This can be deduced by solving for the posterior covariance matrix [see Kalnay 

(2002)]: 

𝑨 = 𝑩 −  𝑩𝑯⊤(𝑯𝑩𝑯⊤ + 𝑹)−1𝑯𝑩 

For ease of illustration, we will consider a one-variable model. The posterior covariance matrix 

reduces to a posterior variance (𝜎𝑎
2) and likewise for the prior covariance matrix (𝜎𝑏

2). Thus: 

𝜎𝑎
2 = 𝜎𝑏

2(1 −
𝜎𝑏

2

𝜎𝑏
2 + 𝜎𝑜

2
) < 𝜎𝑏

2 

where 𝜎𝑜
2 is the observation error variance. From this equation, it is clear that the estimate 

from the EnKF is more precise than that of the prior ensemble. 



Appendix B: RESCUE modelling equations 

Equilibrium curve in phase space 

When a system is out of equilibrium, the new equilibrium state can be obtained by considering 

the chemical equilibrium equation and the conservation of mass: 

[𝐸] [𝑆]  = 𝐾𝑒𝑞[𝐸𝑆] 

[𝐸]  +  [𝐸𝑆]  =  𝐸𝑇  

[𝑆]  +  [𝐸𝑆]  =  𝑆𝑇 

 

During the equilibration process, 𝐸𝑇 and 𝑆𝑇 are constants (mass conservation). Solving this set 

of equations yields the following: 

[𝐸𝑆]  =
1

2
(𝐸𝑇 + 𝑆𝑇 + 𝐾𝑒𝑞)  ±

1

2
√(𝐸𝑇 + 𝑆𝑇 + 𝐾𝑒𝑞)2 − 4 𝐸𝑇 𝑆𝑇  

 

Clearly, there can only be one possible concentration of [𝐸𝑆], if given a value of 𝐸𝑇 and 𝑆𝑇. The 

unrealistic solution is one which would definitely result in a negative concentration if plugged 

into the conservation equations. From the conservation equations, for concentrations to always 

be non-negative, the conditions are 

0 ≤ [𝐸𝑆] ≤ 𝐸𝑇   and    0 ≤ [𝐸𝑆] ≤ 𝑆𝑇. 

Since 𝐸𝑇 , 𝑆𝑇 and 𝐾𝑒𝑞are always positive, then it is clear that 

[𝐸𝑆]  =
1

2
(𝐸𝑇 + 𝑆𝑇 + 𝐾𝑒𝑞)  −

1

2
√(𝐸𝑇 + 𝑆𝑇 + 𝐾𝑒𝑞)2 − 4 𝐸𝑇 𝑆𝑇  

 

In our simulations, if we assume equilibrium to always hold, the enzyme-substrate 

concentrations must always fall on this curve. To recast this into a form suitable for time-

integrations, we apply the chain rule. For ease of writing, we define: 

𝑓(𝐸𝑇 , 𝑆𝑇)  ≡
1

2
(𝐸𝑇 + 𝑆𝑇 + 𝐾𝑒𝑞) −

1

2
√(𝐸𝑇 + 𝑆𝑇 + 𝐾𝑒𝑞)2 − 4 𝐸𝑇 𝑆𝑇 

Then, 

𝜕𝑡  [𝐸𝑆] = 𝜕𝐸𝑇
 𝑓(𝐸𝑇 , 𝑆𝑇)  𝜕𝑡 𝐸𝑇   +   𝜕𝑆𝑇

 𝑓(𝐸𝑇 , 𝑆𝑇) 𝜕𝑡 𝑆𝑇 

The 𝜕𝑥denotes a partial derivative with respect to variable 𝑥. 

 

As such, to determine the evolution of the enzyme-substrate concentration, we need the time-

derivatives of the total enzyme and total substrate concentrations. 

 

 

Evolution of total enzyme due to ES ⇒ P + E 

Assuming no creation or destruction of cas13-gRNA, then, 



𝜕𝑡  𝐸𝑇 = 0 

I.e., 

𝜕𝑡 [𝐸𝑆] =   𝜕𝑆𝑇
 𝑓(𝐸𝑇 , 𝑆𝑇) 𝜕𝑡 𝑆𝑇 

 

 

Evolution of total substrate 

The substrate is generated constitutively and decays over time. Furthermore, the ES ⇒ P + E 

reaction removes ES. Hence, the total substrate’s rate of change is: 

𝜕𝑡  𝑆𝑇 = 𝑔𝑆 − 𝑑𝑃[𝑆] − 𝐾𝑃[𝐸𝑆] 

𝑔𝑆 and 𝑑𝑆 are the constitutive production and decay constants. The last term is the loss of 

substrate from  ES ⇒ P + E. 

 

 

Evolution of modified mRNA (P) 

𝜕𝑡 [𝑃] = 𝐾𝑃[𝐸𝑆] − 𝑑𝑃[𝑃] 

𝑑𝑃 is the decay constant for the modified mRNA. It is likely that 𝑑𝑃 = 𝑑𝑆. 

 

 

Production and decay of reporter proteins 

𝜕𝑡 [𝐺𝐶] = 𝛾𝐺𝐶[𝑆] − 𝑑𝐺𝐶[𝐺𝐶] 

𝜕𝑡  [𝐶] = 𝛾𝐶[𝑃] − 𝑑𝐶[𝐶] 

 

 

 


