To provide our experiments with solid foundation, we incorporated theoretical analysis into
the entire construction, verification and application of SPOT. Considering the basic feature
of SPOT is the spontaneous formation of granules, we first computed the approximate
phase diagrams concerning the conditions for phase separation from a thermodynamic
perspective. For a more dynamic process, we also simulated liquid-liquid phase separation
based on stochastic Cahn-Hilliard equation. The partial differential equations are solved by
finite-element method under Neumann boundary condition, along with Crank-Nicolson
scheme for time stepping. We altered an parameter named y to predict what will happen
if we change the strength of interaction, presumably the concentration of inducer.

Based on the simulation of phase separation, we explored the potential applications of
SPOQOT, for instance, metabolic regulation. In this case, previously simulated separation
process can represent the concentration of enzymes in a temporal sequence. We coupled
it with a typical enzyme kinetic reaction to predict how would SPOT affect reaction rate.

Considering that our project is mainly predicated on liquid-liquid phase separation, we
simulated phase separation of a ternary mixture in silico for deeper understanding and
approximate predictions of our experiments. To better demonstrate the underlying
principles, we started with a binary mixture to see why and when two components will
separate.

Generally, when intermolecular interactions are neglected (i.e. all molecules can be treated
independently), two components tend to mix with each other until entropy reaches its
maximum. The resulting homogeneous mixed state remains stable in this case. For
instance, water and ethanol can be mixed at any ratio.
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Figure. 1: (A) Mixed binary mixture, circles with different colors denote different molecules.
(B) Demixed binary mixture, one component forms a dense liquid droplet.

Things might get a little different when interaction among molecules are considered. Under
the conditions of constant temperature, volume and particle numbers, the system is at
equilibrium when the Helmholtz free energy F is the lowest. Based on regular solution



model, the free energy density f takes the following form in the unit of kgT [1]:
A
f=olme+ (1-¢)n(1—¢)+xp(1—¢)+ 5 [Ve[ (1)

where ¢ is the volume fraction of one component (let us say component A), y is a
parameter characterizing the strength of intermolecular interactions, and A is related to
the surface tension between interfaces. The volume fraction of A is defined as the volume
of A molecules divided by the total volume of the system. In a binary system, the volume
fraction of the other component, let us say component B, naturally becomes 1 — ¢.

First let's focus on the symmetric part of f, ie fuy=¢dIngp + (1 —¢)In(1—¢) +
x9(1 — ¢), and see how its shape changes as we vary y. When A and B are attracted to
each other, y is less than 0; when A and B repulse each other, y is greater than 0. As
can be easily seen in Fig. 2, when y < 2, f, only has one minimum; when y > 2, f,
has two minima and one maximum. A bifurcation takes place when y = 2, which
essentially alters the free energy density.
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Figure. 2: Plot of the symmetric part of free energy density at various values of y.

For better illustration, we scrutinized two typical cases, y = 0 and y = 4. Fig. 3 shows
the free energy density for the mixed state in blue solid lines and the separated state in
green dotted line. As can be seen in Fig. 3, when y = 0, for any initial concentration
represented by ¢, the system always requires extra free energy to demix into any two
separate states ¢, and ¢,, where the green dotted line is higher than any point on the
blue solid line between ¢, and ¢,; when y = 4, there exists a range of ¢, to
separate into two demixed compositions ¢, and ¢,, where the green dotted line is
lower than any point on the blue solid line between ¢, and ¢,. This is the situation
where phase separation can happen spontaneously.
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Figure. 3: The blue solid line and the green dotted line represent the free energy density
for the mixed state and separated state, respectively. (A) ¥ = 0. The green dotted line is
always higher than the blue solid line, indicating an extra energy requirement for separation;
(B) x = 4. The green dotted line is below the blue solid line, making spontaneous phase
separation possible.

To be more precise, we can specify the conditions under which separation can happen.
According to fundamental work on liquid-liquid phase separation [2], when d?f/d¢? < 0,
any local perturbation will result in spontaneous separation. Such a formation is named
spinodal decomposition. When d?f/d¢? > 0 and between the two minima, only
sufficiently large global perturbations can make phase separation happen. Such an
approach is called nucleation. Their boundary is named spinodal line. Now, if the free
energy density function is symmetric, when ¢ lies outside the two minima, phase
separation cannot happen. The boundary determining whether phase separation can take
place or not is called binodal line.

Based on the criteria above, we plotted the phase diagram of a binary mixture. In Fig. 4,
we represent the initial concentration by ¢ in the x-axis and vary y in the y-axis. The
region confined by the spinodal line is the unstable region, in which separation can take
place under any local perturbation. By contrast, the region between the binodal line and
the spinodal line is the metastable region, where only sufficiently large global
perturbations can initiate separation.
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Figure. 4: Binary phase diagram. The binodal line shows the boundary between conditions
under which phases can and cannot separate. The spinodal line shows the boundary
between two different formations: spinodal decomposition and nucleation. The area
confined by spinodal line is the unstable region while the area between the bimodal line
and spinodal line is the metastable region.

As mentioned above, our system is a ternary mixture system consisting of two multivalent
proteins and water, which is a bit more complicated. To capture the basic features of three-
component phase separation, we used a similar theoretical model for simulation. The free
energy density f is now written in the unit of kzT as:

f=¢1In¢1 + @2 In s + ¢3 In 3+
X1-2¢192 + X1-3P193 + X2-3P203+

A A A
SV + S|Vl + Vs @)

where ¢, denotes the first multivalent protein (or example FKBP), ¢, denotes the
second multivalent protein (for example Frb) and ¢; denotes water. An intrinsic relation
of the three is given by:

¢1+ P2 + 3 =1 (3)

Phenomenologically speaking, ¢; and ¢, condensate together and separate from ¢;.
For computational convenience, y;_, and y;_3 are assumed to have values above 2
and y,_3 below 2. A ternary phase diagram is calculated in a similar way by determining
whether ¢; and ¢; separate and whether ¢, and ¢ separate. The results are
shown in Fig. 5.
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Figure. 5: Ternary phase diagrams. (A) X1-2 = 0; X1_3 = 8; X233 =3;(B) X1_2 =0;
X1-3 = 8; X2-3 = 4.

The phase diagram only provides a rough approximation of where phase separation can
happen; it is insufficient to predict what happens after the separation. Hence, we further
recur to the continuum model first proposed by Cahn and Hilliard to simulate a dynamic
process. The specific formulas are written as:

)
5 = V- (M) (4)
©= @ —\V2ic (5)
de

We used the finite element method in a 100%x100 mesh and selected the Neumann
boundary condition to solve the partial differential equations above. The Crank-Nicolson
method was used for time-stepping with a footstep of 2.0 x 103, The initial composition is
given by adding a perturbation of strength 10 to a homogenous sate. A typical result is
given as follows:
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Figure. 6: Simulation for dynamic evolution of phase separation under y;_, = 0, ;-3 =
3 , x2—3 = 4. (A) The concentration distribution of ¢; (B) The centration of ¢; on the




sampled red dotted line in (A).

We further adjusted the interaction strength between the two proteins, thus affecting both

X1i—3 and y,_3. As y increases, indicating a stronger interaction, the time for phase
separation to occur is decreased, which is in accordance with our experimental results.

Figure. 7: Simulation of phase separation under different interaction strengths. The
stronger the interaction, the faster the separation emerges.
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Simulation for metabolic regulation with phase separation

Before carrying out actual experiments on metabolic regulation, we conducted several
computational simulations.

First, a conceptual model was established. To simplify the model, we capture the basic
features of phase separation as compartments. We assumed that there are two boxes with
equal volumes, one with dichotomous separate composition and the other with a uniform
mixture. They are shown in Fig. 1 to represent the situations with and without phase
separation, respectively. In this instant, the total amount of enzyme and substrate are
identical in both boxes. The difference is that enzyme and substrate are distributed
homogeneously in the uniform mixture, while they are divided into two parts in the
separated case. The volumes of the two parts are denoted by ¥V and (1 — y)V, which
add up to V, which is the total volume for both boxes. The enzyme is condensed in the



xV part, and we assumed that its concentration is enhanced by p. The enzyme
concentration is then written as p[E]. To guarantee that the total amount of enzyme
remains unchanged, the enzyme concentration in the other part is automatically

1__13?( [E]o. The substrate is treated in the same way: q[S] inthe yV part and 11__—q; [S]

1

inthe (1 — y)V part. For convenience, we stress here that p is assumed to be a number
larger than one in all subsequent cases, but there is no limit on q.
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Figure. 1: lllustration of a dichotomous separate box and a uniform box.

Next, we coupled them with a typical enzyme kinetic reaction model shown in Fig. 2.
Considering a quasi-steady-state and the conservation of enzyme, the instantaneous
reaction rate can be expressed using the Hill equation:
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Figure. 2: Mathematical representation of typical enzymatic kinetic reaction.

Thus, the instantaneous amounts of product in the two cases are:
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To see the effect of how separation affects reaction rate, we take the quotient of the two
and define it as Q:

e ()] ()]

)T ()

Ky

Q= (4)

Then if Q > 1, separation accelerates reaction; if Q < 1, separation decelerates reaction.

It can easily be seen that the effect of enzyme concentration is nearly linear. Thus, even
when the enzyme condenses, if the substrate still remains uniformly distributed, i.e. p >
1 and g = 1, it has no effect on the reaction rate. In other words, Q = 1 once q = 1.
To conclude, if we aim to alter the reaction rate through phase separation, a heterogeneous
distribution of substrate must be satisfied.

From another perspective, we can regard equation (4) as a relation between the dependent

variable @ and the independent variable [S]/K, under parameters p, q and y. Here
are some typical calculation results:
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Figure. 3: (A) p > 1, g > 1. The reaction is significantly accelerated when [S]/Kj, is
small while there are no apparent effects when [S]/K, is large. The calculation is
conducted under the conditions y = 0.2, p=4,gq=3 and n=1.B)p>1, qg<1.
Reaction is decelerated when [S]/K, is small while there are no apparent effects when
[S]/K, is large. The calculation is conducted under the conditions y = 0.2, p =4, q =
0.7 and n = 1.

Based on the calculations, when g > 1, the enzyme and substrate condense in the same
part and the reaction is accelerated; when g < 1, the enzyme and substrate condense in
different regions, thus inhibiting the reaction. But in both cases, observable changes only
take place when [S]/K, is small. The smaller [S]/K, is, the more obvious the changes
become.

We also varied the Hill number n to see what differences will emerge. As expected, the
larger n is, the more sigmoid the kinetic curve becomes, and the more significant the
acceleration.
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Figure. 4: Positive cooperative binding promotes the acceleration process. The calculation
is conducted under the conditions y = 0.3, p = 2.65 and g = 2.

To sum up, we arrived at several rough conclusions. For noticeable enhancement to
happen, the system requires:

1. enzyme and substrate condensing in the same droplet

2. arelatively large Ku

In addition, positive cooperative binding increases the acceleration.

But how to condense the enzyme and substrate together? Since the diffusion velocity is
generally larger than the reaction rate, if the substrate diffuses normally down the



concentration gradient, normal distribution will almost eliminate any heterogeneous
distribution of substrate instantaneously. We simulated this process by coupling reaction-
diffusion equations with the previously described formula to model phase separation.
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Figure. 5: Dynamic process of metabolism with and without phase separation when
substrate diffuses normally down the concentration gradient. The four columns represent
the concentration distribution of the enzyme, substrate, and product in a normalized plot,
and the average substrate and product concentration, respectively. The upper and lower
groups represent the simulations with and without phase separation, respectively.
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Figure. 6: The average product concentration over time. When substrate diffuses normally
down the concentration gradient, the groups with and without phase separation show a
slight difference.

Fortunately, if the substrate has a higher solubility in the dense oil phase, once the enzyme
droplets form, the substrate can be attracted to the droplet. Hence, enzyme and droplet
both condense in the same droplet. It is possible to anticipate a significant acceleration of
reaction as predicted by the previous conceptual model since p >1 and g > 1. In
practical computation, the substrate is incorporated in the free energy density expression
and diffuses along the chemical potential as well. The complete equations are specified as
follows:

3[;]” =V - (MgVug) (9)
i — d‘fgﬂ —ApV?[Ely (10)
% _ % + V- (MgVpus) (11)
ps = % ~AsV?[S] (12)
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Figure. 7: Dynamic metabolic process with and without phase separation when substrate
condenses together with the enzyme. The four columns represent the concentration
distribution of the enzyme, substrate, and product in a normalized plot, and the average
substrate and product concentration, respectively. The upper and lower groups represent
the simulations with and without phase separation, respectively.
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Figure. 8: The average product concentration over time. When the substrate condenses
together with the enzyme, phase separation accelerates the reaction. (A) n = 1; (B) n =
4. Positive cooperative binding demonstrates a positive effect.

Judging by the simulation results, when the substrate has a higher solubility, the reaction
rate is indeed increased. Incidentally, positive cooperative binding also had a positive effect
in this simulation.

Generalized from the conceptual model and dynamic simulation, we were finally able to



attain the two conditions for accelerating the reaction:
1. the substrate or intermediate has a higher solubility in the droplet phase
2. the reaction has a relatively large Ku



