
To provide our experiments with solid foundation, we incorporated theoretical analysis into 

the entire construction, verification and application of SPOT. Considering the basic feature 

of SPOT is the spontaneous formation of granules, we first computed the approximate 

phase diagrams concerning the conditions for phase separation from a thermodynamic 

perspective. For a more dynamic process, we also simulated liquid-liquid phase separation 

based on stochastic Cahn-Hilliard equation. The partial differential equations are solved by 

finite-element method under Neumann boundary condition, along with Crank-Nicolson 

scheme for time stepping. We altered an parameter named 𝜒 to predict what will happen 

if we change the strength of interaction, presumably the concentration of inducer. 

 

Based on the simulation of phase separation, we explored the potential applications of 

SPOT, for instance, metabolic regulation. In this case, previously simulated separation 

process can represent the concentration of enzymes in a temporal sequence. We coupled 

it with a typical enzyme kinetic reaction to predict how would SPOT affect reaction rate. 

 

SIMULATION FOR PHASE SEPARATION 

_______________________________________________________________________________________________ 

 

Considering that our project is mainly predicated on liquid-liquid phase separation, we 

simulated phase separation of a ternary mixture in silico for deeper understanding and 

approximate predictions of our experiments. To better demonstrate the underlying 

principles, we started with a binary mixture to see why and when two components will 

separate. 

 

Generally, when intermolecular interactions are neglected (i.e. all molecules can be treated 

independently), two components tend to mix with each other until entropy reaches its 

maximum. The resulting homogeneous mixed state remains stable in this case. For 

instance, water and ethanol can be mixed at any ratio. 
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Figure. 1: (A) Mixed binary mixture, circles with different colors denote different molecules. 

(B) Demixed binary mixture, one component forms a dense liquid droplet. 

 

 

Things might get a little different when interaction among molecules are considered. Under 

the conditions of constant temperature, volume and particle numbers, the system is at 

equilibrium when the Helmholtz free energy 𝐹 is the lowest. Based on regular solution 



model, the free energy density 𝑓 takes the following form in the unit of 𝑘𝐵𝑇 [1]: 

 

where 𝜙  is the volume fraction of one component (let us say component A), 𝜒  is a 

parameter characterizing the strength of intermolecular interactions, and 𝜆 is related to 

the surface tension between interfaces. The volume fraction of A is defined as the volume 

of A molecules divided by the total volume of the system. In a binary system, the volume 

fraction of the other component, let us say component B, naturally becomes 1 − 𝜙. 

 

First let’s focus on the symmetric part of 𝑓 , i.e 𝑓0 = 𝜙 ln 𝜙 + (1 − 𝜙) ln(1 − 𝜙) +

𝜒𝜙(1 − 𝜙), and see how its shape changes as we vary 𝜒. When A and B are attracted to 

each other, 𝜒 is less than 0; when A and B repulse each other, 𝜒 is greater than 0. As 

can be easily seen in Fig. 2, when 𝜒 < 2, 𝑓0 only has one minimum; when 𝜒 > 2, 𝑓0 

has two minima and one maximum. A bifurcation takes place when 𝜒 = 2 , which 

essentially alters the free energy density. 

 

 

Figure. 2: Plot of the symmetric part of free energy density at various values of 𝜒. 

 

 

  For better illustration, we scrutinized two typical cases, 𝜒 = 0 and 𝜒 = 4. Fig. 3 shows 

the free energy density for the mixed state in blue solid lines and the separated state in 

green dotted line. As can be seen in Fig. 3, when 𝜒 = 0, for any initial concentration 

represented by 𝜙0, the system always requires extra free energy to demix into any two 

separate states 𝜙1 and 𝜙2, where the green dotted line is higher than any point on the 

blue solid line between 𝜙1  and 𝜙2 ; when 𝜒 = 4 , there exists a range of 𝜙0  to 

separate into two demixed compositions 𝜙1 and 𝜙2, where the green dotted line is 

lower than any point on the blue solid line between 𝜙1 and 𝜙2. This is the situation 

where phase separation can happen spontaneously. 



 

 

 

Figure. 3: The blue solid line and the green dotted line represent the free energy density 

for the mixed state and separated state, respectively. (A) 𝜒 = 0. The green dotted line is 

always higher than the blue solid line, indicating an extra energy requirement for separation; 

(B) 𝜒 = 4. The green dotted line is below the blue solid line, making spontaneous phase 

separation possible. 

 

 

To be more precise, we can specify the conditions under which separation can happen. 

According to fundamental work on liquid-liquid phase separation [2], when 𝑑2𝑓/𝑑𝜙2 < 0, 

any local perturbation will result in spontaneous separation. Such a formation is named 

spinodal decomposition. When 𝑑2𝑓/𝑑𝜙2 > 0  and between the two minima, only 

sufficiently large global perturbations can make phase separation happen. Such an 

approach is called nucleation. Their boundary is named spinodal line. Now, if the free 

energy density function is symmetric, when 𝜙  lies outside the two minima, phase 

separation cannot happen. The boundary determining whether phase separation can take 

place or not is called binodal line. 

 

Based on the criteria above, we plotted the phase diagram of a binary mixture. In Fig. 4, 

we represent the initial concentration by 𝜙 in the x-axis and vary 𝜒 in the y-axis. The 

region confined by the spinodal line is the unstable region, in which separation can take 

place under any local perturbation. By contrast, the region between the binodal line and 

the spinodal line is the metastable region, where only sufficiently large global 

perturbations can initiate separation. 

 

 



 

Figure. 4: Binary phase diagram. The binodal line shows the boundary between conditions 

under which phases can and cannot separate. The spinodal line shows the boundary 

between two different formations: spinodal decomposition and nucleation. The area 

confined by spinodal line is the unstable region while the area between the bimodal line 

and spinodal line is the metastable region. 

 

 

As mentioned above, our system is a ternary mixture system consisting of two multivalent 

proteins and water, which is a bit more complicated. To capture the basic features of three-

component phase separation, we used a similar theoretical model for simulation. The free 

energy density 𝑓 is now written in the unit of 𝑘𝐵𝑇 as: 

 

where 𝜙1  denotes the first multivalent protein (or example FKBP), 𝜙2  denotes the 

second multivalent protein (for example Frb) and 𝜙3 denotes water. An intrinsic relation 

of the three is given by: 

 

Phenomenologically speaking, 𝜙1 and 𝜙2 condensate together and separate from 𝜙3. 

For computational convenience, 𝜒1−2 and 𝜒1−3 are assumed to have values above 2 

and 𝜒2−3 below 2. A ternary phase diagram is calculated in a similar way by determining 

whether 𝜙1  and 𝜙3  separate and whether 𝜙2  and 𝜙3  separate. The results are 

shown in Fig. 5.    

 

 



 

Figure. 5: Ternary phase diagrams. (A) χ1−2 = 0; χ1−3 = 8; χ2−3 = 3; (B)  χ1−2 = 0; 

χ1−3 = 8; χ2−3 = 4. 

 

 

The phase diagram only provides a rough approximation of where phase separation can 

happen; it is insufficient to predict what happens after the separation. Hence, we further 

recur to the continuum model first proposed by Cahn and Hilliard to simulate a dynamic 

process. The specific formulas are written as: 

 

We used the finite element method in a 100×100 mesh and selected the Neumann 

boundary condition to solve the partial differential equations above. The Crank-Nicolson 

method was used for time-stepping with a footstep of 2.0 × 10-3. The initial composition is 

given by adding a perturbation of strength 10-2 to a homogenous sate. A typical result is 

given as follows:      
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Figure. 6: Simulation for dynamic evolution of phase separation under 𝜒1−2 = 0, 𝜒1−3 =

3 , 𝜒2−3 = 4. (A) The concentration distribution of 𝜙1; (B) The centration of 𝜙1 on the 



sampled red dotted line in (A). 

 

 

We further adjusted the interaction strength between the two proteins, thus affecting both 

𝜒1−3  and 𝜒2−3 . As 𝜒  increases, indicating a stronger interaction, the time for phase 

separation to occur is decreased, which is in accordance with our experimental results. 

 

 

 

Figure. 7: Simulation of phase separation under different interaction strengths. The 

stronger the interaction, the faster the separation emerges. 
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Simulation for metabolic regulation with phase separation 

_______________________________________________________________________________________________ 

 

Before carrying out actual experiments on metabolic regulation, we conducted several 

computational simulations. 

 

First, a conceptual model was established. To simplify the model, we capture the basic 

features of phase separation as compartments. We assumed that there are two boxes with 

equal volumes, one with dichotomous separate composition and the other with a uniform 

mixture. They are shown in Fig. 1 to represent the situations with and without phase 

separation, respectively. In this instant, the total amount of enzyme and substrate are 

identical in both boxes. The difference is that enzyme and substrate are distributed 

homogeneously in the uniform mixture, while they are divided into two parts in the 

separated case. The volumes of the two parts are denoted by 𝜒𝑉 and (1 − 𝜒)𝑉, which 

add up to 𝑉, which is the total volume for both boxes. The enzyme is condensed in the 



𝜒𝑉  part, and we assumed that its concentration is enhanced by 𝑝 . The enzyme 

concentration is then written as 𝑝[𝐸] . To guarantee that the total amount of enzyme 

remains unchanged, the enzyme concentration in the other part is automatically  

1−𝑝𝜒

1−𝜒
[𝐸]0. The substrate is treated in the same way: 𝑞[𝑆] in the 𝜒𝑉 part and  

1−𝑞𝜒

1−𝜒
[𝑆] 

in the (1 − 𝜒)𝑉 part. For convenience, we stress here that 𝑝 is assumed to be a number 

larger than one in all subsequent cases, but there is no limit on 𝑞. 

 

 

 

Figure. 1: Illustration of a dichotomous separate box and a uniform box. 

 

 

Next, we coupled them with a typical enzyme kinetic reaction model shown in Fig. 2. 

Considering a quasi-steady-state and the conservation of enzyme, the instantaneous 

reaction rate can be expressed using the Hill equation: 

 

 

 

 

Figure. 2: Mathematical representation of typical enzymatic kinetic reaction. 

 

 

Thus, the instantaneous amounts of product in the two cases are: 



 

To see the effect of how separation affects reaction rate, we take the quotient of the two 

and define it as 𝑄̃: 

 

Then if 𝑄̃ > 1, separation accelerates reaction; if 𝑄̃ < 1, separation decelerates reaction. 

 

It can easily be seen that the effect of enzyme concentration is nearly linear. Thus, even 

when the enzyme condenses, if the substrate still remains uniformly distributed, i.e. 𝑝 >

1 and 𝑞 = 1, it has no effect on the reaction rate. In other words, 𝑄̃ = 1 once 𝑞 = 1. 

To conclude, if we aim to alter the reaction rate through phase separation, a heterogeneous 

distribution of substrate must be satisfied.   

 

From another perspective, we can regard equation (4) as a relation between the dependent 

variable 𝑄̃ and the independent variable [𝑆]/𝐾A under parameters 𝑝, 𝑞 and 𝜒. Here 

are some typical calculation results: 

 

 

 



Figure. 3: (A) 𝑝 > 1, 𝑞 > 1. The reaction is significantly accelerated when [𝑆]/𝐾A is 

small while there are no apparent effects when [𝑆]/𝐾A  is large. The calculation is 

conducted under the conditions 𝜒 = 0.2, 𝑝 = 4, 𝑞 = 3 and 𝑛 = 1. (B) 𝑝 > 1, 𝑞 < 1. 

Reaction is decelerated when [𝑆]/𝐾A is small while there are no apparent effects when 

[𝑆]/𝐾A is large. The calculation is conducted under the conditions 𝜒 = 0.2, 𝑝 = 4, 𝑞 =

0.7 and 𝑛 = 1. 

 

 

Based on the calculations, when 𝑞 > 1, the enzyme and substrate condense in the same 

part and the reaction is accelerated; when 𝑞 < 1, the enzyme and substrate condense in 

different regions, thus inhibiting the reaction. But in both cases, observable changes only 

take place when [𝑆]/𝐾A is small. The smaller [𝑆]/𝐾A is, the more obvious the changes 

become. 

 

We also varied the Hill number 𝑛 to see what differences will emerge. As expected, the 

larger 𝑛  is, the more sigmoid the kinetic curve becomes, and the more significant the 

acceleration. 

 

 

 

Figure. 4: Positive cooperative binding promotes the acceleration process. The calculation 

is conducted under the conditions 𝜒 = 0.3, 𝑝 = 2.65 and 𝑞 = 2. 

 

 

To sum up, we arrived at several rough conclusions. For noticeable enhancement to 

happen, the system requires:  

1. enzyme and substrate condensing in the same droplet 

2. a relatively large KM 

In addition, positive cooperative binding increases the acceleration. 

 

But how to condense the enzyme and substrate together? Since the diffusion velocity is 

generally larger than the reaction rate, if the substrate diffuses normally down the 



concentration gradient, normal distribution will almost eliminate any heterogeneous 

distribution of substrate instantaneously. We simulated this process by coupling reaction-

diffusion equations with the previously described formula to model phase separation. 

 

 

 

Figure. 5: Dynamic process of metabolism with and without phase separation when 

substrate diffuses normally down the concentration gradient. The four columns represent 

the concentration distribution of the enzyme, substrate, and product in a normalized plot, 

and the average substrate and product concentration, respectively. The upper and lower 

groups represent the simulations with and without phase separation, respectively. 

 

 

 



 

Figure. 6: The average product concentration over time. When substrate diffuses normally 

down the concentration gradient, the groups with and without phase separation show a 

slight difference. 

 

 

Fortunately, if the substrate has a higher solubility in the dense oil phase, once the enzyme 

droplets form, the substrate can be attracted to the droplet. Hence, enzyme and droplet 

both condense in the same droplet. It is possible to anticipate a significant acceleration of 

reaction as predicted by the previous conceptual model since 𝑝 > 1  and 𝑞 > 1 . In 

practical computation, the substrate is incorporated in the free energy density expression 

and diffuses along the chemical potential as well. The complete equations are specified as 

follows: 

 



 

Figure. 7: Dynamic metabolic process with and without phase separation when substrate 

condenses together with the enzyme. The four columns represent the concentration 

distribution of the enzyme, substrate, and product in a normalized plot, and the average 

substrate and product concentration, respectively. The upper and lower groups represent 

the simulations with and without phase separation, respectively.  

 

 

 
Figure. 8: The average product concentration over time. When the substrate condenses 

together with the enzyme, phase separation accelerates the reaction. (A) 𝑛 = 1; (B) 𝑛 =

4. Positive cooperative binding demonstrates a positive effect. 

 

 

Judging by the simulation results, when the substrate has a higher solubility, the reaction 

rate is indeed increased. Incidentally, positive cooperative binding also had a positive effect 

in this simulation. 

Generalized from the conceptual model and dynamic simulation, we were finally able to 



attain the two conditions for accelerating the reaction: 

1. the substrate or intermediate has a higher solubility in the droplet phase 

2. the reaction has a relatively large KM 

 

 

 


