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1 Summary

One of the main goals of synthetic biology is to create a modular genetic basis for the independent control
of circuit behavior properties. Much progress has been made in achieving this aim for properties like gene
expression strength (where well-characterized ribosome binding sites (RBSs) can be swapped within a genetic
part), circuit architecture (where promoters can be swapped out to introduce connections and feedback
architectures), and even gene expression noise (through a combination of the above two modulations).

However, one property of gene expression has been less amenable to this approach: the speed or rate of
gene expression. Current control strategies require either a rewiring of the circuit architecture to achieve
different time-dependent dynamics [1, 2] or a complete circumvention of transcriptional circuitry altogether,
relying on post-translational dynamics like phosphorylation [3] or protein-protein interactions [4] to rush
information through a circuit. These approaches are often inaccessible to iGEM teams because they require
too drastic an overhaul of existing circuit implementations.

In this paper, we will begin by first introducing protein degradation tags, and then the concept of
saturation. We then show that by accounting for saturation, the results of our single-gene characterization
should be directly applicable to the circuit context. For proof of evidence, we will show some larger-scale
circuits case studies in the future sections to show the validity of our model when the circuits are operating
under unsaturated regime. In such case, we are able provide a model to elegantly control gene expression
strength using modular, ’plug-and-play’ methods requiring little modification to the protein of interest.

1.1 The Protease Saturation Model

1.1.1 Introduction

In the past months, we have been able to perform a full characterization in the context of a single gene’s
expression, but our intention is to create a model that can be used on a circuit-level context. To adapt to
such a situation, we introduce the idea of protease saturation: Protease saturation is the state where
additional proteins create a load on protease. From our findings, we are able to note that protease
saturation effects activate through an ultra-sensitive transition from unsaturated to maximally saturated,
regardless of the kinetic parameter used to cross the saturation threshold. These is mainly because protease
has reached its maximal rate of degrading tagged proteins. Since effective degradation rate decreases, the
magnitude of the speed change will decrease also. Since there is possibility for the tagged proteins to
exceed the maximal effective degradation amount for a given amount of protease, when there exist multiple
components tagged with pdts, a saturation effect should exist.

To further ensure that our degradation and speed measurements are translatable in large circuit context,
we developed the protease saturation model which is further described in the following section.

1.1.2 The Protease Saturation Model

In this section, we provide a model that is based on literature[5] to describe how the quantity of tagged
proteins varies with time. Instead of using it to analyze the steady-state concentration of proteins, our focus
on speed-to-steady-state distinguishes our work from that of McBride and DelVeccio.
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The following pages summarizes the model.

• Our protein x is produced at a constant rate and diluted with a dilution constant δ:

∅ Hi−−⇀↽−−
δ
xi

• And similarly, the protease is produced and diluted:

∅ a0−⇀↽−
δ
Pfree

• The protease and the protein associate to form a complex, Ci. This reaction is reversible, and the
complex may dissociate to return both its components.

xi + Pfree
ai−⇀↽−
di
Ci

• And the complex-ed protease can also become free by consuming its substrate.

Ci
k−→ ∅+ Pfree

• Finally, the complex is also subjected to the same dilution experienced by x and P

Ci
δ−→ ∅

Each of these reaction follow mass-action kinetics, with rate constants written near the arrow for each
reaction.

From the reactions given above, our base model paper derives the following equations, numbered as eq.
set (3) in McBride’s paper:

ẋi =Hi −aixiPfree + diCi − δxi
Ċi = +aixiPfree − diCi − δCi − kCi

˙Pfree=a0 −
∑
i

aixiPfree +
∑
i

diCi − δPfree +
∑
i

kCi

Which can be reduced to this one equation f(x)[5](Derivation available in the original paper) :

ẋi =

(
Hi(x)−

P (ki + δ) xi

Ki

1 +
∑n
k=1

xk

Kk

− δxi

)/(
1 +

P/Ki(1 +
∑
i6=j(xj/Kj))

(1 +
∑
xk/Kk)2

)
(1)

By assuming:

• The total protease concentration, free plus bound, is at equilibrium; i.e. the P = Pfree +
∑
i

Ci is at

equilibrium. It is easy to see that Ṗfree = a0 − δPfree by computing the sum over equations above,
giving a steady-state P of a0

δ .

• The reactions xi + Pfree 
 Ci are in rapid equilibrium; i.e. the free and bound species equilibrate fast
enough that we can say aPfreexi = dCi at all times. Mathematically, a, d � δ. This is a reasonable
assumption biologically.

The numerator in the overall fraction represents the model’s main dynamics, with three terms: produc-
tion, a nonlinear removal term representing degradation by protease, and a linear removal term representing
dilution. The denumerator ’tones down’ any change in the protein concentration and accounts for the
popluation of complexed protein buffering the free-protein concentration. It has no relevance to steady-
state analyses but is very important for finding speed-to-steady-state, since it is always greater than 1 and
multiplied onto the whole equation.

In our model, −axiPfree explicitly accounts for the protease complexing behavior. In such case, xi is the
amount of load-proteins, and −axiPfree is the amount of free proteases that are sequestered.

The parameters are listed in the following table:
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Parameter Meaning

H production rate
a association rate
d dissociation rate

K = d
a Michealis-Menten dissociation constant

δ dilution rate
k degradation rate
P Total protease concentration

This concludes the summary for the McBride-DelVeccio model.

1.2 Goal: the speed measure and how to minimize it

Again, our overarching project goal is to tunably rush the flow of information in genetic circuits. To formalize
this concept,we define a variable called τ . For any protein, τ measures the time it takes for protein, starting
with an initial concentration of 0, to reach half of steady-state concentration. In this document, we are only
concerned with measuring τ for proteins whose concentrations start at zero, so τ is equal to the time taken
for the concentration to rise from 0 to half the steady state concentration.

If we could adjust any parameter we want as much as we want, lowering τ would be extremely easy:
increased speed to steady state merely requires high proportionate degradation rates.

Consider an illustration of this in a grossly simplified model for protein degradation, where the amount
of protein degraded per unit time is simply proportionate to the the total amount. Here, H is the protein
production rate and k is the proportionate degradation rate.

dx

dt
= H − k · x

From the solution of the following equation, we can verify that increasing k would cause a proportionate
decrease in τ :

H

k
− x = (

H

k
− x0)e−kt

Here, x tends towards its steady state H
k with an exponential rate of k, and we have τ = ln(2)

k . To
decrease τ , simply increase k. The catch here is that increasing k would also decrease the steady state
x̄ = H

k . But in this simplified model the drop is easily compensated by increasing the H value, as evident
from the expression of the steady state.

Note that the proportionate-degradation model does not account for the saturation effect in enzyme-
catalyzed degradation. In the simplified model, the term −k · x grows without bounds as x grows, always
proportionate to x. When x is close to 0, the enzyme-catalyzed complex-forming model has a similar behavior.

However, as x becomes large, the term −P (k+δ)
K+x x becomes less than proportionate to x. No matter what x

becomes, it cannot exceed Vmax. This is because the protease gets saturated and becomes a limiting factor
in the degradation reaction. As we shall see, saturation would become a central theme to our investigation
around this model, preventing us from simply using potent proteases and high production rates to minimize
τ .

Thus, our goal is to minimize τ while maintaining the steady state at a constant or near-constant level,
operating under metabolic constraint and the limit on degradation rate imposed by protease saturation. We
have three parameters which we can vary experimentally: we can change the protein production rate H
and the total protease concentration P by switching in different promoters and/or RBSs, and the inverse
affinity ratio K can be altered by switching protein degradation tags. The remaining parameters, k and δ,
are not considered for manipulation: the literature suggests little variability in these parameters, and they
are tied into the intricacies of peptide chain cleaving and cell division respectively, and wouldn’t be easy to
manipulate.
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2 Model Characterization: Methods

In this section, we explain the methods that we used in analyzing our model.

2.1 Analytical Solving

By doing analytical solving, we are able to provide a method to find the speed to half steady-state by algebraic
integration. As it is mentioned in the previous section, τ is equal to the time takes for the concentration
to travel from 0 to half the steady state level, x̄/2. In the single-protein case, an analytical solution can be
obtained for τ .

Since we have ẋ = f(x), we can solve for ẋ = 0 to find all the steady states x may tend to. The
steadystates are solved with the assistance of the Mathematica computer algebra system:

x̄1 = −K

x̄2 =

√
(H − kP − δK − δP )2 + 4δHK +H − kP − δK − δP

2δ

x̄3 =
−
√

(H − kP − δK − δP )2 + 4δHK +H − kP − δK − δP
2δ

Only x̄2 has biological relevance (is positive and real) when all the parameters are positive and real. The
sign of x̄1 warrants immediate elimination. Pulling out ∆ = H − kP − δK − δP , we also have

x̄2,3 =
1

2δ

(
∆±

√
∆2 + 4δHK

)
(2)

. In this form, we can see that as long as 4δHK is positive, x2 > 0 > x3 no matter the sign of ∆. Under
biological conditions where all parameters are positive and real, only x̄ = 1

2δ

(
∆ +

√
∆2 + 4δHK

)
is relevant.

Thus, we now know that

x̄ = x̄2 =

√
(H − kP − δK − δP )2 + 4δHK +H − kP − δK − δP

2δ

.
To make sure that the equation is correct, we consider the impact of different parameters on the steady

state we just solved. We expect higher production rates and higher inverse-affinity K to result in more
protein at steady state, and this is indeed the case: for positive, real parameters,

∂x̄

∂H
,
∂x̄

∂K
> 0

, which means that we expect the steady state to always increase as we increase K and H. Also, since

∂x̄

∂P
< 0

for all valid parameters, increasing the protease concentration must always lower the protein’s steady state
concentration, as expected.

Now, with x̄ in hand, we can derive a formula for τ in the following manner: Consider the reciprocal of
ẋ, which is dt

dx . At any given level of x, it stands for the time it takes for the concentration to pass through
an infinitesimal quantity of x near that lever of x. Thus, if we integrate it over x between 0 and x̄/2, we
should have

τ =

∫ x̄/2

0

dt

dx
· dx

.
Using symbolic integration of the indefinite integral in Mathematica gives us this expression for τ :

τ = − ∆ + Ψ

2(δ + k)

∣∣∣∣x=xss/2

x=0
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Figure 1: Impact of parameters on τ

Where

∆ =

2k(H − kP + δ(K − P )) tan−1

(
−H+kP+δ(K+P+2x)√

−H2+2H(kP+δ(P−K))−(kP+δ(K+P ))2

)
δ
√
−H2 + 2H(kP + δ(P −K))− (kP + δ(K + P ))2

Ψ =
(2δ + k) log(x(kP + δ(K + P + x))−H(K + x))

δ
− 2 log(K + x)

2.2 Simulation

In systems when there is more than one protein, the same calculus techniques are no longer sufficient
to find such a neat solution. Hence, to study speed in systems where proteins compete with each other
for degradation or even regulate each other’s production, we abandoned analytical techniques in favor of
simulations with numerical integrators: we take in a system of coupled differential equations and their
respective initial conditions. Using a numerical integrator we integrate over t → ∞ and confirm that each
dxi

dt → 0.
With the help of package ggplot, we were able to obtain the above graphs (Figure1)
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3 Results

By using the techniques introduced in the previous section, we are able to obtain the following insights from
our model:

I Protease degradation behaves as an additional term to dilution when protein concentration is small, but
when protein concentration is comparatively large, it can be considered as a reduction from the protein
production constant. This effect can be considered in terms of the saturation effect, which is the case
when the protease has a reduced impact on the concentration of proteins due to the great amount of
proteins present.

II The speed is positively correlated with the rate of protein production under the domain of all positive
real numbers. If the promoter and ribosome is changed to express a higher level of gene expression,
then the time to half steady-state will increase accordingly.

III The speed of one main protein is negatively associated with the production rate of other proteins.

IV The relationship between K, michealis-menten constant, and τ depends on the production rate of
protein. If the rate of expression for protein is significantly lower than the normal protein expression
rate, then K will have a positive correlation with τ for all positive values. However, for slightly lower
expression, regular expression, or high expression rates, the relationship between τ and K depends on
the strength of protein-protease affinity. If the affinity rate of pdt tag is at the same or higher magnitude
compared to our parameters, the positive correlation still exists between the half-time to steady-state
and K. In such case, there is an optimal value corresponding to τmin.

V Speed will decrease if protease concentration increases. In addition, it will take more time for protein
to reach steady-state level given that the protease is at a steady-state concentration compared to the
case where the concentration of protease is initially at 0 and reaches steady-state at a timescale similar
or smaller than that of protein.

VI The time it takes for protein to reach half steady-state is tunable. To achieve a faster speed, the pro-
duction rate of protein should be lowered, protease concentration should be increased, or under realistic
setting, have a higher protein-protease affinity rate. However, the impact that tuning the parameters
have on speed decreases significantly as the magnitude of the parameters changes exponentially.

4 Plug-And-Play For Tuning Speed

We provide a general guideline for the reader to tune speed of a gene circuit. The toolbox takes in the current
parameters and speed as an input and outputs the protein-protease affinity rate and protein degradation tag
that may result in such speed. Due to the limited number of tags and limitation of the impact of parameters
on speed, the speed may not be reachable.In such case, the tag that will make the speed closest to the user
input value will be shown. In addition, the speed given the degradation tag, and the difference between the
outputted tag speed and the speed that user inputted will be shown. The user can also choose whether to
output graph for a given set of pdt tag for the main protein, the michealis-menten values can be chosen by
selecting from the dropdown menus generated with respect to the number of proteins. For more information
about the toolbox, please consult the following link: https://github.com/TBigJ/iGEM-2017-toolbox/

blob/master/Final_files/Main(ClickMe).ipynb

All the graphs above are plotted using logrithmic scale, the parameters used to generate
the graphs are shown as the following:

Parameters Value Dimension Reference

δ 0.00058 s−1 division of e.coli
K 3.7 µmol cameron, collins, 2014
H 2 µmol min−1 technion hs israel
Ptot .25 µmol mcbride, 2017
k 11.5 min−1 gur sauer, 2008
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