lISc-Bangalore Cell Counting software
InterLab Collaboration

Aim: To attempt to make a cell counting software to reduce manual labor
required for counting cells.

Abstract: The conventional image processing method for counting cells was first
tried, using standard image processing techniques like contrasting, background
subtraction, binary masking and watershedding through ImagedJ. It was found
that various parameters differed between images, and optimizing these
parameters required a considerable amount of manual work. A machine
learning approach was proposed using an Artificial Neural Network (ANN). To
generate the dataset for training and testing the ANN the IGEM-1ISc team
collaborated with other iIGEM teams across India. As a proof of concept, another
simple dataset was generated, on which the ANN was trained and tested. But the
trained ANN was unable to predict the test data accurately, showing that the
current approach to this problem would not work.

Image processing through ImageJ

Step 1: The haemocytometer image was first cropped and converted to 8-bit (to
make it grayscale and make binary operations easier later).

Convert
to 8-Bit

Step 2: Brightness/Contrast levels were changed to darken the cells and lighten
the background.

P
450,\G|©‘/,\A_‘iﬁ:\"\|A|0\\£"7“:” AL EICTIES

£ 749x729 pixels; 8-bit; 533K
|
[
d
[
P

NE

1/ g

Maximum

Brightness

Contrast

reser | LN
Set Apply 3

*CellCount_Tool.txt" (549 bytes) plain text document 1

Brightness/Contrast Adjustment

Step 3: Background subtraction is done. The rolling ball radius has to be figured
out by trial and error. This is followed by another Brightness/Contrast adjustment.

ey 3 P Y T T T
T XA 2 S . o o ,“C:gft-‘-:; o
® Subtract § ettt W i ¢! Brightness 1-3.‘- o h e e g
. B by, e LR K 3
Background * {pf n_‘h) ciop 'f /Contrast /& ;.e,_ : it i -.r? !
‘: .-'r .g' i,!&:""‘. vy » ?, : "-‘ ' : .". q“..\".';:
i ® 1, A bolus R0 8 “ A _-.'\-};‘. L
I8 LT A B L S DT A iy
Wegh TN s R Ly
-'L\" TEALL % E» \4:\- b T

o Rh, Qe vl 5 oy Tt

A 2 By ;Tﬂ'ﬁ s i 'o.,", s ;ff".'."(X
o o VLTS« SR PRI 7L ¢ 75

Step 4: The image is then converted to a binary mask. And the holes in the binary
mask are filled using the fill holes option in ImageJ

'-'-7’:’f"t Fhan 2 PR Sl At Tgranst "{: { -t “ g-‘.
\

A et WK o Convert <3,.8.<?. T setep '_"z
. ;Mﬁx,\ R W ML ': toBinary ¥ ¥ -_:_;\ ,.-'(.1:\:‘%”-?‘ ‘_—.: Fill Holes ;ﬁ v J‘&\j“" w1l
c‘ " . ve & wia "-};. g- ‘» " ‘g 2 e #73 ”;_, . 2 e ?' t
e (RN mmlp TWne WA N) [t 5] W Y

o Y, Arn / s 'y e . Yelis . . : ‘
CIAE Y P R R I Y ".-f { BN < ity
; 4‘& R LS e PR 2-';‘?") LIRS VSRS R I
e L e oty : .*--‘.", ~r. Homtp

WISV e TR T e et fa e A e

Step 5: The watershed tool in Imaged is applied. This segments the clustered cells
by drawing a -pixel line between cells. This step is essential before counting.
Proper contrast and binary mapping is essential for the watershed algorithm to
yield desirable results.

-y e L= L j hd -,
o 4 - ¥ Py P L
AP £ Db MG p} N
» i St . .- o
° ey $ “".f.o' ” # o
Loy Se,ode 8 Ta . g -4
el T 8 . - oy “ § e’
Pt . < ' & ' e M‘ S
.-_e,-‘,":\. . e] eg - ,s(,,‘_ r o »
L] _‘.b.-:‘..' .. . 'i,,‘ '2 g " . ..'. . U"
¢, " . ‘ve W 0 M
:“ .% ' ‘ [': .“t‘ - ' - '.0‘ .-
St VR Y AR
: ' "'.. s “" e - ¢ . .‘v»
S ¢ Cve . | ¥ 1,,;..‘: .-. _"
° % ey 4 . 'a ide &,
Sy Sod, 3 w5 elR
* ¥, e N Ay % ’ .',‘.
e A 2 LY SR & T# . ¢ -
i‘!... '. L] ! J ‘
o % o o e e -®.
LA P e .' [3 .
I o . 5 L.
..3 I PR L Yt | &,

Watershed applied to binary image

Step 6: The Analyze Particles option is used to count the number of cells. The
minimum and maximum size are set according to the image.

'3 Image) sampleBacksubs Results summary B Reportodt- Libre... [/homesrohithvige... [cell_counting - Fil [Terminal - rohith 3 @1t
File File Edit Image Process Analze Plugins Window Help File Edit Search View Document Help
e Dev| Stk //Haemocytometer CellCount tool
(:EQ‘Q‘®|/V|A_|++_‘§\‘A‘0\‘{"?“:” E‘-" t"f’¢‘<§)|/c‘|0| ‘»; = //Developed by IISc-iGEM 2817 team
lAnalyze Particles...: 0.117 seconds, 4.7 million pixels/second
DEVires T — v macro "CellCount Tool - C@@cOllcc” {
o 749x729 pixels; 8-bit (inverting LUT); 533K N Summary, - h = g .");
. N - L8 . - il
| .-'.2 ' . _'1 . ’:“a . LJ) File Edit FTnt
. ’ . ’; & e ‘ ¢a [Count [Total Area [Average Size [WArea [Mean | b+, "rolling=13 light"};
U ‘* .'. - . M &’ 7 - .“ . D 348 83330 239.454 15261 255 E.";
% - ‘ . -
PO BN 3
g _- ~ " v)
Yy e, - -
Py W .J;,‘: - * - %
[l;‘ - . ® . .‘ W
1.5 N)
P A .
R ToL .. - ‘ . - iz
1 'b v Y oy L ! ", "size=108-900 sk 2ar summari
K - 29 €
e) ‘. .- .?i':. 3 ’g.’ Fle Edit Fomt Results
NE ¥ Il-. » - W - P [Area [Mean [Min [Max |
'y ° . * v, te = L 340 250 255 255 255
* : { "'z_ ¢ Gung] 341 253 255 255 255
- [] . e 342 178 255 255 255
L4 i‘-.' N 9 s - ‘.' 343 104 255 255 255
Fa L ﬁ' < ¥ S ‘. . 344 364 255 255 255
. ol - e’ “ e] 345 244 255 255 255
"% e AV, . -) . 5
', + ' » 346 225 255 255 255

.] h » o . §- -

» ' ’ . f..rf‘ L 347 224 255 255 255
%% - . ", , -4

.y - W < oy . . 348 129 255 255 255
B0 LRE AP B SR

"CellCount_Tool.txt" (549 bytes) plain text document

The final count of 348 is shown in the summary window. The actual count is about 370.

Writing a macro for a tool: If there are a set of images taken under similar
conditions of lighting, magnification, etc.. There is a high chance that the same
processing steps with the same parameters work for all the images in the set. It
helps to write a macro/ create a tool in ImageJ for this purpose. This was done
for the above cell counting steps.

3 ®

E @ 100c¢0915

¥ B magel

File File Edit Image

Image)
Process Analze Pluging Window

- x|

elp

. [=lef=q(c] PR ENPNEN W L ENPARY 71 - IR ES 3
‘TCe\ICount Tool \ / 1
L
749x729 pixels; RGB; 2.1MB ,‘ ﬁ ﬁ
Face.png cell_count.txt CellCount_Tool.txt Circle_Tool.txt dataHandling.py generateData.py
aygrount neuralNet neuralNet.py neuralNet.pyc sample.jpg sample8bit.bmp
E [|
= = === ==
xample tfExample.py trolltunga.jpg WhatsApp Image X.npy y.npy

il

"sampleCropped.bmp" (1.6 MB) Windows BMP image

Toolbar with the CellCount tool. Just select the tool and click on the image.

2017-07-10 at
6.41.26 PM.jpeg

CellCount Tool

Y summary g’ E| 10 Oct, 09:16
File File FEdit Image Process Analyze Plugins Window Help
=l (o] P NN EN [T EIPARY P - ES ¢
nalyze Particles..: 0.422 seconds, 1.3 million pixels/second 1
DEVrees, i g T | |
; . [o e
- ummary *x
E 7489x729 pixels; 8-bit; 533K =
i @ File Edt Font it Circle_Tool.txt dataHandling.py generateData.py
@D @ 7 5lice [Count [Total Area [Average Siz
| sampleCroppedbrmp 361 95404 264277 ﬁ . .
|
i neuralNet.pyc sample.jpg sample8bitbmp
PY
‘ o
=== ==
| WhatsApp Image
2017-07-10at
6.41.26 PMjpeg File Edit Font Results
ol [Area [Mean [Min [Max [
= = 353 394 255 5 255
1 jnanla 354 252 255 255 255
] 255 :) 355 240 255 255 255
] - 356 109 255 255 255
Minimum ; 357 247 255 255 255
] = oy 358 144 255 255 255
U i 359 119 255 255 255
-1 Srightness @ 360 105 255 255 255
& 361 147 255 255 255 |
- I = J
Contrast (5] =
Set Apply
BT
R o

"sampleCropped.bmp” (1.6 MB) Windows BMP image

Applying the CellCount tool gives the cell count in a single step. But this only works with
similar images, snce different types of images have different processing parameters.

Macro code [ImageJ macro Language I

//Haemocytometer CellCount tool
//Developed by IISc-iGEM 2017 team

macro "CellCount Tool - CO0cOllcc" {
run("8-bit");
run("Brightness/Contrast...");
setMinAndMax (72, 108);

run("Apply LUT");

run("Subtract Background...", "rolling=13 light");
run("Brightness/Contrast...");
setMinAndMax (80, 230);

run("Apply LUT");
run("Brightness/Contrast...");
setMinAndMax (90, 255);

run("Apply LUT");

run("Convert to Mask");

run("Fill Holes");

run("Watershed");

run("Analyze Particles...", "size=100-900 show=0utlines display
exclude clear summarize in situ");
}

Machine Learning Approach

Introduction to Artificial Neural Networks (ANNs):

An Artificial Neural Network (ANN) is a computational model inspired by the
architecture and functioning of biological neural networks in the human brain.
They consist of interconnected layers of artificial neurons or “nodes”.

Each neuron has multiple inputs and a single output. Each of these inputs have
‘weight” parameters, and each neuron has a “bias” parameter. For a given input,
the output of an ANN is a function of the weights and biases of its constituent
neurons. The ANN “learns” the correct weights and biases by changing them to
“fit” a set of training examples. The ANN then can predict the results for new
inputs based on these weights and biases. Usually, a validation data set distinct
from the training data set is used to test the accuracy of the ANN.

The basic idea was to split the images into 100x100 pixel squares, and to pass the
entire image as input to the ANN one square at a time. However, considering the
tediousness of the task of generating a training data set from real images, an

artificial data set was generated to serve as proof of concept before
proceeding. The ANN failed this test, hence prompting us to re-evaluate our idea.
Upon further research, it was found that the problem is not as simple as we
thought it was, and that current ML-based cell counting algorithms are far more
complex than the one we were trying to implement. Hence the efforts were
discontinued.

Step 1 - Dataset creation:

We thought creating a data set with the following properties would provide a
crude approximation to real-world images:

1. Varying degrees of background and foreground brightness/contrast:
Since lighting conditions vary considerably between different images, we

set the foreground and background brightness to randomly vary within a
range of grayscale values.

2. Varying circularity of cells: We must be able to adjust the circularity of
the cells.

3. Varying sizes: Cells may not be of similar size. We must be able to specify
a range of cell sizes.

Accounting for all these properties, it was decided that a set of images
containing elliptical “cells” varying in size, eccentricity, and brightness and a
varying background brightness was suitable. A code to generate a dataset of
such images was written, along with the code to “unroll” these images into a
suitable input format for the ANN.

Code to generate data set [Python] :

from generateEllipses import generateEllipse
import numpy as np

parameters

IMAGE SIZE = np.uint(100)

CANVAS SIZE = IMAGE SIZE, IMAGE SIZE, 3
MIN SIZE = np.uint(2)

MAX SIZE = np.uint(20)

NUMBER RANGE = np.uint(20)

MIN E = 0O

MAX E = 0.9

MAX BACK ALPHA = 0.45

MIN ELLIPSE ALPHA = 0.65

def generateData(number):

X = np.zeros((1,IMAGE SIZE*IMAGE SIZE))
y = np.zeros(1l)
for 1 in range(0O,number):
I, n = generateEllipse(CANVAS SIZE, MIN SIZE, MAX SIZE,
NUMBER RANGE, MIN E, MAX E,
MAX BACK ALPHA, MIN ELLIPSE ALPHA)

I[:,:,0]

I/255.0

I.reshape(1l,IMAGE SIZE*IMAGE SIZE)
np.append(X,I,0)

np.append(y,n)

< X
| [I [T |

np.save('X',X)
np.save('y',y)

def unrollImage(I):
I = I*255
I np.reshape(I, (IMAGE SIZE,IMAGE SIZE))
img = np.zeros((IMAGE SIZE,IMAGE SIZE,3))
for i in range(0,3):
img[:,:,i] =1

img = np.uint8(img)
return img

generateData(10000)

When run, the above code generated the images, unrolls them and saves a
numpy array of 10,000 unrolled images as X.npy and a humpy array of 10,000
integers as y. npy

Code to generate single image [Python 1 :

Generate a bunch of ellipses
With varying size,eccentricity, foreground and background brightness

import cv2

import numpy as np

import random

import math

import matplotlib.pyplot as plt

def generateEllipse(canvas size = (100,100,3),
min size = 5,
max size = 14,
number range = 11,
min e = 0,
max e = 0.7,
max back alpha = 0.4,
min ellipse alpha = 0.6):
img = np.ones(canvas size, np.uint8)
back alpha = random.random() * max back alpha
img = int(math.ceil(back alpha * 255)) * img

ellipse alpha = min_ellipse alpha + (1 - min_ellipse alpha) *
random. random()

n = random.randrange(number range)

positions = np.zeros((n,2))

e = min e + (max e - min_e) * random.random()
height, width, colors = canvas size

for i in range(n):
position = (int(math.floor(random.randrange(width))),
int(math.floor(random.randrange(height))))
positions[i] = position
major _axis = random.randrange(min size, max size)
minor axis = int(math.floor(major axis / math.sqrt(1l -
math.pow(e, 2))))
axes = major_axis, minor axis
color = math.ceil(ellipse alpha * 255)
color = color, color, color
img = cv2.ellipse(img, position, axes,
random. randrange(0, 360),
0, 360, color, -1)

return img,n

The generateEllipse() function generates animage, returns the image and
the number of ellipses in the image. A few examples of such generated images
are shown here.

Some examples of generated images:

Some examples of generated images. The images show varying foreground and
background color.

Step 2 - Build ANN and train it on Data set:

The ANN was coded using Keras in Python runnung on a TensorFlow backend.
The generateData() function saves the training data as two numpy files X. npy
and y.npy. The ANN was trained on the 10000 images generated with the
generateData() function.

Code:

from keras.models import Sequential
from keras.layers import Dense, Activation
import h5py

import numpy as np

print "Beginning ANN architecture"

model = Sequential()

model.add(Dense (120, input dim=10000))
model.add(Activation('sigmoid'))

model.add (Dense(20))

model.add(Activation('sigmoid'))

model.add (Dense(1))

model.compile(optimizer = 'sgd',loss = 'mean squared error')

X
y

np.load('X.npy")
np.load('y.npy"')

model. fit(X,y)
print "ANN trained. Saving model to file"

model.save("trainedANN.h5")

The above shown code is a four-layer implementation. The ANN has one input
layer, two hidden layers and an output layer. The above code trains the ANN on
the 10,000 images in the training dataset and saves the trained model to a file
named trainedANN.h5

Step 3 - Test model with test dataset:

The saved model was then tested on a test dataset of 100 images. Analysis of the
test results was done by plotting predicted number against actual number of
cells on a 2D graph.

Ideally, all points should lie on a 45° line passing through the origin. The correct
predictions are the points which lie between the lines of slope 45° with y
intercepts 1and -1.

L,
1
7’
// 7’
20_ // /,
° ® e .
° ° oo .7 e
o0 o R Xad
® e o0 .7 .
15 ® ® o o.
e ® o0 o .
o @9 0
) R e
° o ® o o
10 e’ ® o
o owe
o _.‘emné
° s
o o® & o
7
5‘ d 7
@& 7
e R L J
o e e
Rl oo o
e - oo °
01 ® e -° eees
7’

As we can see from the image, only a small fraction of the predicted results are
correct. This exercise has demonstrated that our approach is not compatible
with the problem. The model does show some convergence towards the desired
result but is simply not complex enough to get significantly correct predictions.

Machine learning approaches to cell counting are a rapidly developing field of
research, and this was just our attempt at implementing and testing a simple ML
algorithm to a very simple dataset of artificially generated cell images. In reality,
cell counting is a much more complex problem, with novel solutions being
developed everyday.

We collaborated with teams across our country to get a dataset of
hemocytometer images to train our ANN, but we found that the approach we
had chalked out was too simple even for simplified generated images of cells, let
alone real images of cells under vastly different lighting conditions and varying
sizes which come with noise and background discrepancies.

We are extremely thankful to the teams who have helped us in getting the
hemocytometer images and we regret that we were not able to use the images.

