

Aim

To verify the synthesis and production of proteins from liquid culture of bacteria.

Equipment

- Lysis solution B-PER
- Lysis buffer Tris-Cl 50 mM pH 7.4, NaCl 100 mM, Glycerol 5% v/v, PMSF 15 μM*
- Pipet p100, p200, and p10 and corresponding cones
- Microcentriguge tubes (1.5 and 0.5 ml)
- Heater block at 95°C
- SDS Page gel
- SDS* 20X solution
- SDS 2X gel loading solution
- Protein Molecular weight ladder (Page ruler)
- Gel code blue Coomassie Blue
- Pellets of induced liquid culture of transformed bacteria:..... (stored at -20°C or -80°C)

Induced Bacteria: Small scale 200 ml culture and induction

- 1. Grow one colony of BL21De3 (pLysS) cells containing the pET32/43a plasmid with the insert of interest overnight in 20 ml of LB supplemented with carbenicillin at $50 \mu g/ml$ in a 37° C shaking incubator.
- 2. The next day, after 16 hrs, spin the cells at 3000 x g and resuspend the pellet in 20 ml LB medium.
- 3. Spin the cells one more time.
- 4. Use 1 ml of the resuspended cells to innoculate 100 ml of LB supplemented with carbenicillin at $50 \mu g/ml$.
- 5. Grow the culture at 37°C shaking.
- 6. Take the absorbance at 600 nm (UV5 Mettler Toledo Spectrophotometer) of a 1 ml sample after two hours, and subsequently every 20 minutes to follow the growth profile.
- 7. After reaching an OD_{600} of approximately 0.7, induce the protein expression with IPTG* at 0.5 mM for three hrs.
- 8. Keep an aliquot of uninduced cells, spin at 3000 g and store the pellet at -20°C.
- 9. After the three hours of induction take a 1 ml aliquot measure the OD600, spin the cells down at $3000 \times g$ and store the pellet at -20° C.

Proteins

- 1. Thaw the pellets and resuspend them in B-PER (Pierce / GE HealthCare) solution in a volume ratio such as to obtain $10 \text{ OD/}\mu\text{l}$.
- 2. Add PMSF to 15 μM.
- 3. Vortex the cells for 5 minutes at RT and centrifuge for 10 mins at 16 000 g in a microfuge.
- 4. Transfer the supernatant in a clean labeled tube.
- 5. Resuspend the lysed pellet in an equivalent volume as for the initial intact cell pellet.
- 6. Proceed to adding SDS PAGE 2X loading buffer to 10-20 μ l of lysed cell extract, mix, heat at 95°C for 5 mins, place on ice.
- 7. Load up to 40 μl on a 14-16% SDS PAGE gel (Novex).
- 8. Run at $150\,\mathrm{V}$ in $1X\,\mathrm{SDS}$ PAGE Tris-Glycine buffer until the blue dye has reached the bottom of the gel.
- 9. Open the gel cast plate and transfer the gel to a clean container.
- 10. Wash with de-ionized water for 5 minutes. Repeat two to three more times.
- 11. Add 15 ml of Gel Code Blue coomassie stain. Stain for 20 minutes.
- 12. Wash three times with deionized water.
- 13. Place the gel on a transilluminator for observation and in a Gel Doc for imaging.

Protocol

Sample of cell pellet name	Time	OD	Lysis solution B-PER = 10.0 x OD (µl)
			μl

- 1) Re-suspend cell pellet in μ l = 10.0 x OD, of lysis solution B-PER.
- 2) Centrifuge 10 min at 16 000 g.
- 3) Separate supernatant from pellet, and place supernatant in new tubes.

Sample name	Time	Supernatant volume (μl)	Lysis solution Tris-Cl* = supernatant volume (μl)
			μl

- 4) Re-suspend pellet in μ l = lysis solution B-PER.
- 5) Mix 20 μ l of supernatant or re-suspended pellets with 20 μ l of blue SDS 2X solution in microcentriguge 0.5 ml tubes.
- 6) Place the tubes in heater block set at 95°C fro 5 min.
- 7) Prepare 400 ml of SDS PAGE Buffer 1X solution:

SDS 20X	De-ionized water				
20 ml	380 ml				

.....

- 8) Place the SDS PAGE gel in the electrophoresis tube.
- 9) Pour the SDS PAGE Buffer 1X in the tub containing the gel.
- 10) Add 40 µl of each sample in the wells of the SDS gel.

Lane	1	2	3	4	5	6	7	8	9	10	11	12
Volume (μl)												
Name												

- 11) Set voltage at 150 V and let migrate for 1 h.
- 12) Wash gels 3 times for 5 min in de-ionized water.
- 13) Stain gels by incubating them in 15 ml of Coomassie blue staining Gel Code blue solution for 20 min.
- 14) Wash gels 3 times for 5 min in clean de-ionized water.
- 15) Wash gels by incubating them in clean distilled water overnight.
- 16) Reveal image by white imaging on a transilluminator.

*PMSF: Phenyl methyl sulfonyl fluoride: protease inhibitor, SDS: Sodium dodecyl sulfate.

