Golden Gate Assembly

Introduction

Golden Gate is an assembly method using Type II-S restriction enzymes and predefined overlap sequences to assemble multiple pieces of DNA in one reaction. Golden Gate design is beyond the scope of this protocol; this protocol is the reaction setup only.

Materials

- ightharpoonup 200 μ I thin-wall PCR strip tubes, one per reaction
- > Backbone plasmid
 - > Usually pDONR-GG L1_lacZ_L2 or pDONR-GG L4_lacZ_R1
- > Parts being assembled, either in plasmids or gBlocks
- > Nuclease-free water
- > T4 ligase buffer, 1.5 μ l per reaction
 - Found in single-use aliquots of 10 (??) μ I in the -20° freezer. T4 ligase buffer does NOT like to be thawed and frozen again; once you use an aliquot, discard what's left!
- > 10X BSA, 1.5 μ l per reaction
 - > Found in the -20° freezer. ...and that's Bovine Serum Albumin, NOT the Bsal enzyme!
- **>** Bsal (or Aarl) restriction enzyme, 1μ l per reaction
 - > Leave the Bsal and T4 ligase in the freezer until the very end, and add after the rest of the reaction has been set up.
- > T4 ligase, 1μ l per reaction
 - Many protocols (both online and in the lab) call for high-concentration T4 ligase. This is only necessary if you're doing VERY LARGE Golden Gate reactions (5-8 parts). You do NOT need the HC ligase for most of the GGs you'll be doing.
 - > Leave the Bsal and the T4 ligase in the freezer until the very end, and add after the rest of the reaction has been set up.
- > An **empty** 10μ l or 200μ l tip box
- Ice in an ice bucket

Procedure

Record your reaction setup.

1. A Golden Gate works best when there are equimolar amounts of each part in the reaction. By convention, we use **50 fmol** of each part. For each part (plasmid and gBlock), compute the concentration (fmol/ul) and the volume required for 50 fmol in the table below. If you resuspended your gBlocks at 50 fmol/ul, you can omit them in this table.

Table1					
K	А	В	С	D	E
1	Part	Size (kb)	Concentration, (ng/ul)	Concentration, (fmol/ul)	Volume for 50 fmol
2	pDONR-GG	3.4	100	44.6	1.1
3					
4					
5					

- 2. Record the reaction setup for each reaction below. For each reaction, include:
 - -- 50 fmol of each part
 - -- 1.5 ul T4 ligase buffer
 - -- 1.5 ul 10X BSA
 - -- 1 ul Bsal
 - -- 1 ul T4 ligase
 - -- Water to a total volume of 15 ul.
 - -- NOTE: If you're using Aarl, you need to add the Aarl oligo as well!

Table2	2			
K	A	В	С	D
1	A19 L4_PhIF_R1			
2	pDONR-GG L1_L2	1.1 ul		
3	BT-01 gBlock	1 ul		
4	BT-02 gBlock	1 ul		
5	Water	6.9 ul	х	
6	T4 ligase buffer	1.5 ul	х	
7	10X BSA	1.5 ul	х	
8	Bsal or Aarl	1 ul		
9	T4 ligase	1 ul		
10				

Set up your thermocycler

3. Program a thermocycler with the following program:

NOTE: If you are using **Aarl**, use **50 cycles** instead of 15.

Table3	3		
K	A	В	
1	Heat lid	70°	
2	Start cycle	15X	
3		37° for 1′ 30″	
4		16° for 3′ 0″	
5	Close Cycle		
6	50° for 5′		
7	80° for 10′		
8	Store at 8°		

Set up your reactions

- 4. Fill an empty tip box with ice, put the grey platform back on, then fill with water until just under the rack.
- 5. Label one thin-walled PCR tube per reaction.
- 6. Add the reaction components. Add the water first; add the restriction enzyme and buffer last.
- 7. Cap the tubes. Flick a few times to mix, then pulse spin.
- 8. Load the tubes in the thermocycler and start the program.

Transform

9. Transform as usual. Plate only 10 ul of the outgrowth in a 200 ul puddle of water, or you will get a lawn of colonies.