Ammonium sulphate precipitation assay

Purpose:

Concentrating protein sample and that protein still has function. We will use this sample to run enzyme assay to see if our enzyme has the ability to deink.

Material:

- ammonium sulphate
- protein concentration tube

Procedure:

- 1. Measure the volume of the enzyme medium. Refer to Table 1 to determine the amount of (NH₄)₂SO₄ to add to bring the medium to 30% saturation
- 2. Pour the medium into a centrifuge bottle or large beaker and add the appropriate amount of (NH4)2SO4. Add the stir bar and stir in the cold room for 30 min.
- 3. Remove the stir bar and collect the precipitated proteins by centrifugation at 2 000 rcf for 30 min.
- 4. Discard the supernatant and resuspend the pellet with minimal volume of PBS.
- 5. Put 500 μ l resuspend sample into protein concentration column.
- 6. Centrifuge at 14000g, RT for 20 minutes.
- 7. Discard flow through, flip the column and put in a new eppendorf.

Table 1 Final concentration of ammonium sulfate: percentage saturation at 0° Ca

8. Percentage saturation at 0 °C																	
Initial concentration of ammonium sulfate (percentage saturation at 0 °C)	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
			Sol	id am			fate (g l of so			addeo	d to						
0	10.6	13.4	16.4	19.4	22.6	25.8	29.1	32.6	36.1	39.8	43.6	47.6	51.6	55.9	60.3	65.0	69.7
5	7.9	10.8	13.7	16.6	19.7	22.9	26.2	29.6	33.1	36.8	40.5	44.4	48.4	52.6	57.0	61.5	66.2
10	5.3	8.1	10.9	13.9	16.9	20.0	23.3	26.6	30.1	33.7	37.4	41.2	45.2	49.3	53.6	58.1	62.7
15	2.6	5.4	8.2	11.1	14.1	17.2	20.4	23.7	27.1	30.6	34.3	38.1	42.0	46.0	50.3	54.7	59.2
20	0	2.7	5.5	8.3	11.3	14.3	17.5	20.7	24.1	27.6	31.2	349	38.7	42.7	46.9	51.2	55.7
25		0	2.7	5.6	8.4	11.5	14.6	17.6	21.1	24.5	28.0	31.7	35.5	39.5	43.6	47.8	52.2
30			0	2.8	5.6	8.6	11.7	14.8	18.1	21.4	24.9	28.5	32.3	36.2	40.2	44.5	48.8
35				0	2.8	5.7	8.7	11.8	15.1	18.4	21.8	25.4	29.1	32.9	36.9	41.0	45.3
40					0	2.9	5.8	8.9	12.0	15.3	18.7	22.2	25.8	29.6	33.5	37.6	41.8
45						0	2.9	5.9	9.0	12.3	15.6	19.0	22.6	26.3	30.2	34.2	38.3
50							0	3.0	6.0	9.2	12.5	15.9	19.4	23.0	26.3	30.8	34.8
55								0	3.0	6.1	9.3	12.7	16.1	19.7	23.5	27.3	31.3
60									0	3.1	6.2	9.5	12.9	16.4	20.1	23.9	27.6
65										0	3.1	6.3	9.7	13.2	16.8	20.5	24.4
70											0	3.2	6.5	9.9	13.4	17.1	20.9

75	0 3.2 6.6 10.1 13.7 17.4
80	0 3.3 6.7 10.3 13.9
85	0 3.4 6.8 10.5
90	0 3.4 7.0
95	0 3.5
100	0

^aAdapted from Dawson RMC, Elliott DC, Elliott WH, and Jones KM (eds.) (1969) Data for Biochemical Research, 2nd edn. London: Oxford University Press.

TCA protein precipitation assay

Purpose:

Concentrating protein sample and run the SDS-PAGE to see if we have the right protein.

Materials:

- 100% TCA
- Acetone
- Tris-base
- 2X Protein sample buffer
- 2-mercaptoethanol

Procedures:

- 1. Place medium with enzyme into 50 ml centrifuge tube and add in 100% TCA, which is a 6% final solution.
- 2. Mix carefully and incubate on ice for 15 minutes.
- 3. Spin down for 10 min at 4°at 13,000 g and remove the supernatant.
- 4. Wash the pellet with 1 ml ice-cold acetone. This helps remove acids and salts.
- 5. Cut off the end of a pipette tip to make the opening larger, move the sample from centrifuge tube to microcentrifuge tube.
- 6. Spin down for 10 min at 4° at 13,000 g, remove the supernatant and set for 15 minutes to air dry the pellet.
- 7. If necessary (too much salt left) redo step 4 and 6.
- 8. Resuspend pellet in SDS-PAGE protein sample buffer. The TCA pellet can be difficult to resuspend, and it may be necessary to work the pellet into solution with a pipette tip.
- 9. If the protein sample buffer turns yellow, add 2M Tris-base that has not been adjust for PH, 1 μ l at a time, until it turns blue again. Be sure to add an equal amount of Tris-base to each sample as the extra salt can cause the samples to run differently on the SDS-PAGE gel.
- 10. Add in 2-mercaptoethanol, which is a 10% final solution.
- 11. Boil sample at 95° for 5 minutes.
- 12. Make sure your sample is still blue, if it is not, add in more Tris-base.
- 13. Ready for loading SDS-PAGE.

Small tips to rid of bubbles:

- 1. Spray ethanol in the air and that small amount of ethanol touch the bubbles, it will that bobbles be fragile and broken.
- 2. Centrifuge the sample in low speed for a small amount of time.

Enzyme condensation assay

Purpose:

To condense yeast secreted enzymes in the medium.

Material:

- Medium with yeast secreted enzymes(induced xylanase/ lipase; non-induced xylanase/ lipase)
- Amicon® Ultra-15 centrifugal filter
- 1X PBS
- Centrifuge tube

Procedure:

- 10. Use pipet aid to suck 12 mL medium and put into Amicon® Ultra-15 centrifugal filter
- 11. Centrifuge the medium at 4°C, 5000g for 50 min
- 12. Discard the filtrate
- 13. Collect the protein solution remain on the filter
- 14. Add 150 μ L 1X PBS and rinse the filter to collect the protein remain on it
- 15. Put all the collection in a bacteria free centrifuge tube
- 16. The condensed enzyme were used to do SDS PAGE to check enzyme exists and add into paper pulp to test deink efficiency