

Microinjection Experiment Design:

1. miniMos system

- 1) Make miniMos vector with transgene chrimson and CoCHR (backbone is pCEH361).
- 2) Maintain healthy injection strain (TM4063).

Healthy worms are much easier to inject and result in higher insertion frequencies. Maintain unc-119 strains at 22° C.

- 3) Make injection mix.

The MiniMos system we used:

Chrimson system:

Chrimson plasmid	20ng/ul
Mos transponase	50ng/ul
Peel-1	10ng/ul
Mcherry	5ng/ul

CochR system:

CochR plasmid	20ng/ul
Mos transponase	50ng/ul
Peel-1	10ng/ul
GFP	5ng/ul

- 4) Inject worms and recover

After injection, place in 22°C incubator to recover for 4 hours. Then put plates in high temperature (30°C) incubator for 12hrs to enhance the rate of plasmid getting inside the embryos. Then put worms back to 22°C incubator to culture.

- 5) Screen plates

Observe F1 phenotype after 3 days. Select and transfer the free-moving worms expressed fluorescence of marks to new plates and incubate at 22°C.

- 6) Single and characterize insertion

Wait until worms starve (about 6 days later), do the heatshock experiments (34°C, 4hrs). Take out plates and incubate at 22°C for four hrs. Find the free-moving worms from plates. Single out and keep culturing.

(We used the miniMos vectors with Phsp:peel-1 in the backbone, so it can kill (most) array animals by a two hour heat-shock at 34° C in an air incubator. Array animals are dead approximately 4 hours after heat-shock.)