iGEM Munich 2017 Protocols

Gold Nanoparticles (AuNP) - DNA conjugation

Aim of the Experiment

This experiment is used to label Gold Nanoparticles (AuNP) with thiolated DNA strands. These DNA labels then enable crosslinking of AuNP upon addition of complementary oligonucleotides.

Materials

- Centrifugal filter (Amicon Ultra, 100 kDa Millipore, USA)
- Concentrated AuNP (see protocol "Preparation of Gold Nanoparticles")
- Thiolated DNA-strands (100 µM, Biomers)
- Tris (carboxyethyl) phosphine hydrochlorid (100 mM)(TCEP, Sigma Aldrich, Germany)
- Citrate buffer (100 mM, pH 3) (Simga Aldrich, Germany)
- HEPES (100mM, pH 7) (Carl Roth, Germany)
- 0,5x TBE buffer (Carl Roth, Germany)
- 1x Control buffer (1x TAE, 12,5 mM MgCl₂)

Procedure

- Incubate thiolated DNA strands with 2 µl of TCEP for at least 30 min.
- Mix the thiolated DNA strands and AuNP with a molar ratio of 100:1.
- Add 0.25 volumes of citrated buffer for a final concentration of 20 mM and pH 3.
- Incubate for 3 min at room temperature. For challenging strands like G-rich sequences, extend incubation time.
- Add 0.25 volumes of HEPES for a final concentration of 20 mM and pH 7.

iGEM Munich 2017 Protocols

• To test the success of the conjugation, spot $\sim 2~\mu l$ of conjugate on a clean surface and add 2 equal volume of 1x control buffer. If the solution remains red, the conjugation was successful.

- The next step, removal of unbound DNA, is recommended to conduct shortly before linkage assays.
- Wet centrifugal filters by adding of 400 μl 0,5x TBE buffer and centrifugation in a table-top centrifuge at 2000 rcf for 5 min.
- Remove unbound DNA by addition of the labelled AuNP to the columns and centrifugation at 10000 rcf for 10 min and discard flowthrough.
- Repeat this step four times while adding 400 µl before each step.
- Retrieve AuNPs from column by placing the filter upside down into the column and centrifuging at 10000 rcf for 10 min.
- Concentration of labelled AuNP is determined at wavelength $\lambda = 518$ nm and extinction coefficient $\epsilon = 8.5 \cdot 10^{-7}$ mol⁻¹ cm⁻¹.