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1 Supplementary methods 

The AEMD was written by perl5 and python 2.7 and the webserver is mainly 

based on Django. AEMD-Web provides users with an intuitive interface, enabling 

users to conveniently run protein engineering for improving enzyme stability, 

selectivity and activity.  

1.1 Stability analysis process 

The analysis pipeline about designing mutation sites for stability was showed in 

Fig. 1A. From the input target sequence, the tool executes the evolution- and 

energy-based approaches in parallel. For the evolution-based analysis, the 

homologous sequences of target protein were first detected through blast in local 

UniRef90 database. Then, we used hmmbuild to build a profile HMM (Eddy, 1998) 

which was used to search UniRef90 database again. After filtering the high similar 

proteins by cd-hit (Li and Godzik, 2006), we made a multiple sequence alignment for 

the remaining homologous sequences by Muscle (Edgar, 2004). We then obtained the 

intensity of coevolution and conservation for each residue, as well as the frequency of 

amino acids in each position. For the energy-based analysis, we first detected all 

homologous PDB structures by blast in local PDB database. We then sorted the 

homologous structures to obtain the best template PDB structure (Template PDB) by 

taking identity, coverage and resolution information into account. If the best PDB 

structure has 100% identity with the target enzyme, we use it directly in the next 

analysis; If the best PDB structure has identity less than 100% but more than 30%, we 

generated the PDB model of the target enzyme (Target PDB) by RosettaCM (Song, et 

al., 2013). After that, the ∆∆G was estimated for all point mutations (Length of 

enzyme * 19) by the FoldX (Guerois, et al., 2002) and Rosetta-ddG (Kellogg, et al., 

2011), respectively. 

 Through the evolution- and energy-based analysis, we obtained four 

stability-associated properties for all point mutations, including intensity of 



coevolution (the number of residues coevolving with target residue), feasibility 

(frequency difference between original and other residues), ∆∆G
foldx

 and ∆∆G
Rosetta

. 

Then a computational prediction for the selection of point mutations was implemented 

based on the integration of these properties, and machine learning methods (SVM, 

support vector machines), and a training set from ProTherm database (Gromiha, et al., 

2004). Finally, parts of point mutations which had the highest predictive score were 

selected and emailed to the users for further experimental verification. The reliability 

and applicability of this analysis had been demonstrated in the FRESCO (Wijma, et 

al., 2014) and FireProt (Bednar, et al., 2015). In the further, we hope to collect more 

precise stability-associated mutations and properties for improving the accuracy of the 

computational model. 

 

1.2 Selectivity analysis process 

The analysis about selecting mutations for specificity design was showed in Fig. 

1B. The inputs need two files: one is the target sequence or target PDB file; the 

second is a substrate file with SDF format. If one of the input is protein sequence, we 

obtain the target PDB file in a similar way to that does in the stability design module. 

Based on the protein PDB and substrate SDF files, we first determined the interaction 

between ligand and protein backbones in two ways: 1). If the input substrate is the 

native substrate of the target enzyme, we directly used the native substrate for design; 

2). If the input substrate is similar with native substrate of the target enzyme, we first 

make a flexible ligand alignment between the input substrate and native substrate 

using the “flex_align” function of Schrodinger software (QikProp, 2015), then the 

native substrate was replaced by the input substrate. Subsequently, the residues within 

5Å distance from substrate were selected as the resfile input for the Rosetta “coupled 

moves” design method (Ollikainen, et al., 2015). This method will redesign (with 20 

amino acids) and repack these residues. After multicycle optimizations for these 

candidate positions, an optimal residue assembly was offered for next round of 

experimental validation. To make a straightforward way to visualize the result, the 

optimal residues were shown with sequence logos using weblogo (Crooks, et al., 



2004). It had been proved that the analysis can significantly increase the accuracy in 

both predicting ligand specificity altering mutations and binding site sequences 

(Ollikainen, et al., 2015). 

 

1.3 Activity analysis process 

 Because of the complexity of enzyme catalysis, it’s difficult to predict point 

mutation improving protein activity accurately. We recently described a method which 

is able to identify desired mutations by analyzing the coevolution information of 

protein sequences (Liu, et al., 2016). In the AEMD-web, some point mutations are 

suggested by this method. Besides, our analysis generated some residues close to 

active center and transport tunnels which are recommended to saturated mutation to 

improve activity (Fig. 1C). For the input of target protein sequence, we first obtain the 

PDB file using RosettaCM (Song, et al., 2013). Next, the substrate of template PDB 

was mapped into target PDB using the “struct_align” funciton of Schrodinger 

software (QikProp, 2015). The spatial location of substrate in target PDB can help to 

determine the ligand-binding pocket of target enzyme. If all potential template PDB 

had no substrate in the PDB file, we predicted the ligand-binding pocket by a Rosetta 

script (gen_apo_grids.linuxgccrelease) (Zanghellini, et al., 2006). After the 

determination of ligand-binding pocket, we generated the possible catalytic sites by 

search local Catalytic Site Atlas (Furnham, et al., 2014); the residues within 5Å 

distance from ligands by calculating the minimum distance between residue and 

substrate; and the residues located within 3 Å distance from transport tunnels by 

CAVER (Chovancova, et al., 2012). 

 

2 Supplementary Results 

The AEMD-Web interface and interactive reports in the form of PDF are shown 

in figure S1. The analysis report for improving stability was showed in Fig. S1B, 

which showed the conservative residues in target enzyme, and the recommended 

mutation sites for thermodynamics stability. For example, “1  M252L  0.7575  

-2.2988” represented that, we suggested to mutate the 252th methionine to leucine, 



the frequency difference between the 252th leucine and methionine is 0.7575 in all 

homologous enzymes, and the mutation ∆∆G is -2.2988 kcal/mol. The analysis report 

for improving specificity was showed in Fig. S1C. Firstly, the report lists the 

recommended mutations whose probability are greater than a cutoff (0.4) for 

selectivity engineering. For example, “Y540S 0.965” represented that, we advised to 

mutate the 540th tyrosine to serine at a probability of 0.965. Then, the relative amino 

acid bias of all designed positions is shown with a Sequence logos, and the height of 

each symbol within the stack indicates the relative frequency of each amino acid at 

that position. The analysis report for improving activity was showed in Fig. S1D, 

which showed the conservative residues in target enzyme, the residues located within 

5 Å distance from substrate and cofactors and the residues located within 3 Å distance 

from transport tunnels. The residues close to active center and transport tunnel are 

recommended to saturated mutation to improve activity. We also showed some 

site-directed mutations based on the evolutional analysis. For example, “350 

S(0.1349) -------> H(0.7084)” represented that, the frequency of the 350th native 

serine and the recommended histidine is 0.1349 and 0.7084, and we suggested to 

mutate the serine to histidine.  

 

 



 

Fig. S1 The AEMD-Web interface and analysis reports. 

 

Note: The interface of the AEMD-web pipeline (A). In this page, we could select one of the 

three engineering types to use. And for the detailed inputs information for different types, please 

refer to the “HELP”. B, C and D represent the part of analysis reports for stability, selectivity 

and activity design, respectively. 



 

Table S1. Overview the computational tools for enzyme engineering 

Resources Functions Types References 

MSPocket Detecting ligand-binding pocket Software (Zhu and Pisabarro, 2011) 

TRITON Detecting ligand-binding pocket Software (Prokop, et al., 2008) 

CAVER Analysis and visualization of tunnels and channels Software (Chovancova, et al., 2012) 

Foldx Engineering the stability of proteins and protein complexes  Software (Van, et al., 2011) 

ELASPIC Predicting stability changes upon mutation Web Services (Witvliet, et al., 2016) 

I-Mutant2.0 Predicting stability changes upon mutation Web Services (Capriotti, et al., 2005) 

INPS Predicting stability changes upon mutation Web Services (Fariselli, et al., 2015) 

DUET Predicting stability changes upon mutation Web Services (Pires, et al., 2014) 

MAESTRO Predicting stability changes upon mutation Software + Web Services (Laimer, et al., 2016) 

PoPMuSiC Predicting stability changes upon mutation Web Services (Dehouck, et al., 2011) 

SABER Selection of Active/Binding sites for Enzyme Redesign Computational strategy (Nosrati and Houk, 2012) 

Janus Prediction of Mutations Required for Functional Interconversion of Enzymes Software (Addington, et al., 2014) 

ROSETTA Enzyme design, structure modeling, ddG calculation and so on Software (Leaver-Fay, et al., 2011) 

FRESCO Computationally designed libraries for rapid enzyme stabilization Computational strategy (Wijma, et al., 2014) 

FireProt Computational Design of Thermostable Multiple-Point mutations Computational strategy (Bednar, et al., 2015) 

ProSAR Directed evolution approach Computational strategy (Fox, et al., 2007) 

 

Table S2. Overview the computational tools using in AEMD 

Resources Functions Types References 

ROSETTA Enzyme design, structure modeling, ddG calculation and so on Software (Leaver-Fay, et al., 2011) 

FoldX Engineering the stability of proteins and protein complexes Software (Van Durme, et al., 2011) 

CAVER Analysis and visualization of tunnels and channels Software (Chovancova, et al., 2012) 

HMMER Protein sequence similarity searches Software + Web Services (Finn, et al., 2011) 

MUSCLE Multiple sequence alignment Software (Edgar, 2004) 

ClustalW Multiple sequence alignment Software (Thompson, et al., 2002) 

trimAl Automated alignment trimming Software (Capella-Gutirrez, et al., 2009) 

SCA Statistical coevolution analysis Matlab based algorithm (Süel, et al., 2003) 

UCSF Chimera structure preparation and refinement Software (Pettersen, et al., 2004) 

Openbabel structure format identification and conversion Software (O'Boyle, et al., 2011) 

WebLogo sequence logo graph construction Software + Web Services (Crooks, et al., 2004) 

cd-hit clustering and comparing large sets of protein sequences Software + Web Services (Li and Godzik, 2006) 

Circos An information aesthetic for comparative genomics Software (Krzywinski, et al., 2009) 

 



 

Table S3. The running time of all examples 

Type Testing set Sequence length Running time 

Activity 3LKK 245 7.2h 

 2FZN+HYP 602 1.5h 

 

1FCB +173 511 45min 

 

2O7B +TCA 523 1.8h 

Selectivity 1A80+NAD 277 20min 

 

1PK7+TAL 237 15min 

 

1K70+FPY 426 25min 

 

2H6F +GER 382 15min 

 

3HG5+A2G 398 33min 

 1BN6 294 6.5h 

 1BNI 110 4h 

 1BVC 153 3h 

 1CSP 67 2h 

 1LZ1 130 4h 

Stability 1RN1 104 3h 

 1VQB 87 1.5h 

 2CI2 83 1.5h 

 2LZM 164 2.5h 

 2RN2 155 2.5h 

 4LYZ 129 5h 

Note. The time consumption statistic of three different type of engineering were show 

in table S3, the difference of time consumption mainly dependent on the sequence 

length and Job type. The calculations were implemented in CentOS 6.6. Jobs were 

executed using machines running 64 bit, 12-core, two 2.2GHz processors with 24 GB 

of memory. 

 



 

Table S4. Comparing the stability analysis pipeline in AEMD with FireProt 

FireProt AEMD 

mutations ddG_FoldX ddG_Rosetta mutations feasibility ddG_FoldX ddG_Rosetta 

E20Q -1.09 -2.13 E20Q 0.012 -1.41 -2.38 

C128F -2.21 -8.45 C128F 0.428 -1.26 -2.51 

C128M -3.48 -2.96 C128M -0.006 -3.32 -1.63 

T148W -1.09 -2.65 T148W -0.061 -0.93 -0.07 

T148L -1.96 -2.00 T148L 0.188 -2.06 -2.59 

C176F -2.22 -7.07 C176F 0.006 -2.78 -4.75 

C176L -2.01 -5.28 C176L 0.004 -2.97 -3.63 

C176H -1.08 -4.82 C176H 0.006 -2.11 -3.95 

C176M -2.51 -4.24 C176M 0.002 -2.91 -3.14 

D187W -1.37 -2.58 D187W -0.261 -0.88 -3.39 

D198W -1.36 -4.55 D198W -0.218 -0.66 -3.41 

D198F -1.98 -2.95 D198F -0.224 -1.77 -0.24 

D198Y -1.85 -2.75 D198Y -0.210 -1.78 -0.65 

D198L -1.92 -2.53 D198L -0.220 -1.28 -1.12 

N217Y -2.38 -2.38 N217Y -0.018 -2.56 0.98 

V219W -1.77 -3.04 V219W -0.392 -1.54 -4.49 

C262L -1.64 -4.93 C262L 0.234 -2.01 -0.93 

C262M -1.42 -2.94 C262M -0.065 -2.42 1.56 

D266Y -2.43 -2.90 D266Y 0.008 -1.22 -1.91 

D266F -2.31 -2.41 D266F -0.038 -1.56 -1.87 

Note: The proposed mutations by FireProt (the left three columns) were obtained from 

Table S4 in Bednar, et al., 2015. The ddG represented the change of Gibbs free energy 

(∆∆G) after the mutation, and the unit of ddG is kcal/mol. The feasibility represented 

the frequency difference between the native and the recommended residues in all 

homologous enzymes. 20 out of 22 mutations were proposed by the stability analytic 

pipeline. The rest two candidates may be due to a low resolution protocol and a 

different weight file (“soft_rep_design”) were used in Rosetta ddg-monomer module 

in our pipeline for improving the efficiency. 

 



Table S5. The AEMD selectivity analysis pipeline results 

PDB Ligand Mutation Catalytic center Rank 

2FZN HYP Y540S √ 1 

1FCB 173 - √ - 

2O7B TCA H89F √ 37 

1A80 NAD K232G √ - 

1PK7 TAL M64V √ 46 

1K70 FPY D314A √ 14 

2H6F GER - √ - 

3HG5 A2G E203S √ 3 

Note: The AEMD selectivity pipeline analysis result of eight experimentally validated 

specificity engineering mutations, low ranking results my due to the limits of current 

selectivity engineering strategies. 

 

Table S6. The AEMD activity analysis pipeline results 

Mutation Catalytic center Tunnels Surface Recommend 

G45A √ - - √ 

V73T √ - - √ 

V73I √ - - - 

V130A √ - - - 

I140V √ - - - 

Y141L √ √ - √ 

Y141V √ - - - 

K204A √ - √ - 

K204G √ - √ - 

Note: The AEMD activity pipeline analysis result for isopentenyl phosphate kinase 

(IPK) mutants, all of the six positions (45, 73, 130, 140, 141 and 204) reported were 

accurately predicted in the substrate binding pocket or the substrate channels, and 3 

out of 9 point mutations (G45A, V73T and Y141L) were listed in the recommendation 

part of final report. 
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