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INTRODUCTION

e iGEM competition:
©  Annual, worldwide competition in synthetic biology
o Started in 2003
o Initially for undergraduate students

o  Goal: build simple biological systems from standard, interchangeable parts and operate them in
living cells




INTRODUCTION

e BioBricks: w + ¢' 4 & v M+

o  Starting point for iGEM projects

promoter

o Biological standardized parts
such as:
m Promoters
m Terminators
m Reporter elements
m Plasmid backbones

o  Building blocks used to construct

new biological systems

gene of interest

targeting signal terminator marker

+

ol

plasmid backbone

l one reaction with the USER™
and a final E.coli transformation

%

Plug'n'Play plasmid
with your favorite DNA



PREVIOUS TGEM PROTECTS

e 2007 - BioBricks extension
o  Addressed problem with BioFusion of BioBricks

o Resulted in the new Freiburg standard

e 2013 - Colisweeper

o Minesweeper with bacteria

L

e 2008 - Biofabricator

o Bioprinter used to build other

biological materials



1GEM 2016 - PROTECT PROPOSALS

Drylab Wetlab

DNA computing Microbial thermometer




DNA COMPUTING: INTRODUCTION

e Whatis DNA computing?

o  Use synthetic DNA molecules as data carrier

o  Computation on the DNA carried out by:
m Biotechnology laboratory protocols
m  Enzymes

m DNA itself: self-assembly, hybridisation ...

o  Computation goes on in:
m [nvitro: test tube (watery solution)
m [nvivo (smart medicine)
m DNA chips with diamond surfaces



DNA COMPUTING: INTRODUCTION

e DNA for data storage

O

o Veryrobust

o  Long term (thousands of years)
o  Can be easily copied

o  Archiving

e DNA for computation

o Silicon-based chips reach their limits

o  Molecular computation can be performed in other

environments (e.g. within a cell)
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Enormous capacity: ~ 2200 TB per gram with reliable encode and decode (Goldman et al, Nature 2013)
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DNA COMPUTING: (DIS)ADVANTAGES OF DNA

e Advantages:

o  Small information unit
m 1gramof DNA — 2200 TB
o Possibility of an abundance of parallel computations

o  Energy efficient: 20 trillion operations per Watt

e Disadvantages:

o Slow

o Hard to analyze results

o Noterror free

o  Expensive: needs constant supply of enzymes and proteins
o Intensive man labour



DNA COMPUTING: BRIEF OVERVIEW

e Hybridization reactions
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DNA COMPUTING: BRIEF OVERVIEW

e Enzyme reactions

(@)

(@)
(@)
(@)

Restriction enzymes
Nicking enzymes
Ligase enzymes
Polymerase enzymes

e DNAzyme reactions

(@)

DNA-based sequences that possess
enzymatic activities
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DNA DATABASE - EXAMPLE

e Database entries:
o Resin bead
o  Proximal/Distal primers
o Database region

Distal
Primer

Site

Database Region

Proximal
Primer
Site

Resin
Bead
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DNA DATABASE - EXAMPLE

e Database region:
o  Word - Block design

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4
Word2 A Word3A Word4 A
WordlB Word2B Word3B Word4 B
Word1C Word2C Word3C Word4C
Word1D Word3D Word4D
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DNA DATABASE - EXAMPLE

Generating words:
o No G’s - decrease chances of secondary structure formation
o  Melting temperature
o Hamming distance
o  Frameshift
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DNA DATABASE - EXAMPLE

e (Querying

o  Synthesise query-probe with fluorescent marker
m Complementary with desired database entry

o Mix probe with database library
m Hybridization

o  Separate beads (database entries) which hybridised with query
m  FACS (Fluorescence Activated Cell Sorting)

o Sequence separated sequences
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DNA DATABASE - EXAMPLE

e Translation to real-life database: semantic web

o Database entries: triples
m E.g. Martijn - has_favorite_beer - Karmeliet
m Coded into DNA-sequence

o Query:
m  Whatis Martijn’s favorite beer?
m  Query: Martijn - has_favorite_beer

o Hybridisation -> separation -> sequencing
m  Sequenced database entry will read “Martijn - has_favorite_beer - Karmeliet”
m — Martijn’s favorite beer = Karmeliet
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DNA COMPUTING: OUR PROTECT PROPOSAL

Simulation of a database encoded in DNA that can be queried by using DNA
computing techniques: DNA origami & DNA strand displacement

NOW: digital information is stored in DNA but the entire DB
need to be sequenced in order to retrieve some information.

GOAL: design a database system in which sequence selective capture is possible

HOW: Database = collection of DNA molecules (in vitro: in solution or on chip - in vivo)
Query = programmed DNA origami & DNA strand displacement reactions
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DNA COMPUTING: OUR PROTECT PROPOSAL

DNA origami

e The nanoscale folding of DNA to create two-
and three-dimensional shapes at the nanoscale.

e (an be designed using the cadnano software (MIT)

e (Canrecognize a DNA element and change its conformation
as a consequence of hybridization

e The conformational change can lead to the release
of a molecule, for example a drug, or possibly a
subquery sequence - this can be modelled.

e DNA origami can interact with each other

DNA strand displacement cascade
e (Can be simulated in visual DSD (Microsoft). DSD is a programming language for DNA strand
displacement reactions.
e Isalready used in the context of DNA sequence detection (for example biosensors)
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WETLAB - THE MICROBIAL THERMOMETER

e Temperature = important parameter !
e Microbes developed protective mechanisms

e RNA thermometers (riboswitches)
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WETLAB - THE MICROBIAL THERMOMETER
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WETLAB - THE MICROBIAL THERMOMETER

GFP-derived mRFP1-denved Evolved by SHM
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WETLAB - THE MICROBIAL THERMOMETER




