

Bram Danneels, Griet De Clercq, Niels Mariën, Wouter Steyaert and Chari Vandenbussche

INTRODUCTION

• iGEM competition:

- Annual, worldwide competition in synthetic biology
- Started in 2003
- Initially for undergraduate students
- Goal: build <u>simple</u> biological systems from standard, interchangeable parts and operate them in <u>living</u> cells

INTRODUCTION

• BioBricks:

- Starting point for iGEM projects
- Biological standardized parts such as:
 - Promoters
 - Terminators
 - Reporter elements
 - Plasmid backbones
 - ...
- Building blocks used to construct new biological systems

PREVIOUS IGEM PROJECTS

• 2007 - BioBricks extension

- Addressed problem with BioFusion of BioBricks
- Resulted in the new Freiburg standard

• 2013 - Colisweeper

Minesweeper with bacteria

• 2008 - Biofabricator

 Bioprinter used to build other biological materials

IGEM 2016 - PROJECT PROPOSALS

Drylab *DNA computing*

Wetlab *Microbial thermometer*

DNA COMPUTING: INTRODUCTION

What is DNA computing?

- Use synthetic DNA molecules as data carrier
- Computation on the DNA carried out by:
 - Biotechnology laboratory protocols
 - Enzymes
 - DNA itself: self-assembly, hybridisation ...
- Computation goes on in:
 - In vitro: test tube (watery solution)
 - In vivo (smart medicine)
 - DNA chips with diamond surfaces

DNA COMPUTING: INTRODUCTION

DNA for data storage

- \circ Enormous capacity: ~ 2200 TB per gram with reliable encode and decode (Goldman et al., Nature 2013)
- Very robust
- Long term (thousands of years)
- Can be easily copied
- Archiving

DNA for computation

- Silicon-based chips reach their limits
- Molecular computation can be performed in other environments (e.g. within a cell)

DNA COMPUTING: (DIS)ADVANTAGES OF DNA

Advantages:

- Small information unit
 - 1 gram of DNA \rightarrow 2200 TB
- Possibility of an abundance of parallel computations
- Energy efficient: 20 trillion operations per Watt

Disadvantages:

- Slow
- Hard to analyze results
- Not error free
- Expensive: needs constant supply of enzymes and proteins
- Intensive man labour

DNA COMPUTING: BRIEF OVERVIEW

Hybridization reactions

DNA COMPUTING: BRIEF OVERVIEW

Enzyme reactions

- Restriction enzymes
- Nicking enzymes
- Ligase enzymes
- Polymerase enzymes

DNAzyme reactions

 DNA-based sequences that possess enzymatic activities

Database entries:

- Resin bead
- Proximal/Distal primers
- Database region

Database region:

Word - Block design

• Generating words:

- No G's decrease chances of secondary structure formation
- Melting temperature
- Hamming distance
- Frameshift

Querying

- Synthesise query-probe with fluorescent marker
 - Complementary with desired database entry
- Mix probe with database library
 - Hybridization
- Separate beads (database entries) which hybridised with query
 - FACS (Fluorescence Activated Cell Sorting)
- Sequence separated sequences

• Translation to real-life database: semantic web

- Database entries: triples
 - E.g. Martijn has_favorite_beer Karmeliet
 - Coded into DNA-sequence
- Query:
 - What is Martijn's favorite beer?
 - Query : Martijn has_favorite_beer
- Hybridisation -> separation -> sequencing
 - Sequenced database entry will read "Martijn has_favorite_beer Karmeliet"
 - → Martijn's favorite beer = Karmeliet

DNA COMPUTING: OUR PROJECT PROPOSAL

Simulation of a database encoded in DNA that can be queried by using DNA computing techniques: DNA origami & DNA strand displacement

NOW: digital information is stored in DNA but the entire DB need to be sequenced in order to retrieve *some* information.

GOAL: design a database system in which sequence selective capture is possible

HOW: Database = collection of DNA molecules (in vitro: in solution or on chip - in vivo)

Query = programmed DNA origami & DNA strand displacement reactions

DNA COMPUTING: OUR PROJECT PROPOSAL

DNA origami

- The nanoscale folding of DNA to create twoand three-dimensional shapes at the nanoscale.
- Can be designed using the cadnano software (MIT)
- Can recognize a DNA element and change its conformation as a consequence of hybridization
- The conformational change can lead to the release of a molecule, for example a drug, or possibly a subquery sequence this can be modelled.
- DNA origami can interact with each other

DNA strand displacement cascade

- Can be simulated in visual DSD (Microsoft). DSD is a programming language for DNA strand displacement reactions.
- Is already used in the context of DNA sequence detection (for example biosensors)

- Temperature = important parameter !
- Microbes developed protective mechanisms

RNA thermometers (riboswitches)

I. Translation initiation (cis-acting)

II. Antisense binding (trans-acting)

